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Abstract 

Two-sided orthogonal decompositions (TSOD) have been essential tools for es- 

timating the numerical rank of a matrix and computing various important subspaces 

including the range (signal) and null (noise, error) spaces. They include partial and 

complete singular value decompositions (SVD), the URV decomposition (URVD), and 

the ULV decomposition (ULVD). 

Given the TSOD of an m-by-n (m > n) matrix A, it is often desirable to suc- 

cessively add a new row to A and to compute the TSOD of the modified matrix. This 

is called the updating problem. The opposite computation, the downdating problem, 

deletes the existing row from A, and computes the TSOD of the modified matrix. These 

problems of updating and downdating can be transformed into those of modifying a 

symmetric positive definite matrix by a rank-one matrix. 

In this thesis we propose several algorithms for rank-one updates and downdates 

to these decompositions with strong stability properties and efficient implementations 

2 
on high-performance computers. We seek algorithms which only require ö(n ) opera- 

3 
tions per update or downdate unlike recomputing the TSOD in 0(n ). We also desire 

highly regular data movement inherited in these algorithms in order to implement these 

efficiently on the distributed-memory MIMD multiprocessors. The algorithms are based 

upon "chasing" strategies for updating and downdating procedures for orthogonal de- 

compositions. 

In modifying the SVD and partial SVD, our algorithms separate singular values 

into "large" and "small" sets and then obtain an updated bidiagonal form with corre- 

sponding "large" and "small" columns. This makes more accurate update or downdate. 



IV 

The algorithm can be implemented almost identically for both updating and downdat- 

ing by reducing the problems to a 2 x 2 updating/downdating problem. Moreover, the 

bidiagonal reduction phase is highly parallelizable. A perturbation theory for modifying 

the SVD is also presented; it shows that the computed subspaces associated with large 

and small singular values are as accurate as can be expected. 

An alternative to performing the singular value decomposition is to factor a matrix 

( C \    T 
into A = U I IV   where U and V are orthogonal matrices and C is a lower triangular 

matrix indicating a separation between two subspaces by column size. These subspaces 

are denoted by V = (V V ), where the columns of C are partitioned conformally into 

C = [C C ) with HCUIp ^ e • Here e is some tolerance. In recent years, this has been 

called the ULVD. A downdating algorithm is proposed which preserves the structure 

in the downdated matrix C to the extent possible. Strong stability results have been 

proven for these algorithms based on a new perturbation theory. When C is given as an 

upper triangular matrix, we have the URVD. We describe algorithms for modifying the 

URVD, and make comparison with our algorithms for modifying the ULVD in terms of 

the computed subspaces. 

When downdating the ULVD, a deflation step is necessary to compute its nu- 

merical rank. We propose an improved algorithm which almost always guarantees the 

rank-revealing structure of the decomposition after a downdate without the deflation 

process. This requires some condition estimation. Moreover, one can monitor the con- 

dition of the downdating problem by tracking exact quantities of Frobenius norms of all 

three blocks of the lower triangular factor in the decomposition. The algorithm is also 

used to update the ULVD with a slight modification. 



A fully parallel algorithm for modifying the SVD is also presented. We consider 

both cyclic and consecutive storage schemes. We will show that the latter scheme out- 

performs the former on a coarse-grain distributed-memory MIMD multiprocessor mainly 

due to high communication cost required by the former. We present the experimental 

results on the 32-node Connection Machine (CM-5). A speed-up of 20 and the efficiency 

of CPU utilization 60% are achieved for matrices of moderate size. 

Our algorithms for modifying the TSOD offer a promising approach to a number 

of problems like the recursive total least squares, linear regression, the subspace-based 

methods for signal processing, image processing, and pattern recognition. These prob- 

lems require a real-time solution in estimating the numerical rank of the data matrices, 

and orthonormal basis for the subspaces associated with large and small singular values. 

Our algorithms are capable of providing those answers since continual updating and 

downdating are required by the underlying physical model. 
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Chapter 1 

Introduction 

1.1    Statement of Problem 

1.1.1    Two-Sided Orthogonal Decompositions (TSOD) 

The TSOD of an m x n matrix A, where m> n, can be characterized by writing 

them in the form 

A-U 
M 

VT                                                (1.1) 

\   °   ) 

where U G 1Z          and V G TZ        are orthogonal, and M G TZ        has one of the fol- 

lowing forms: diagonal, partially reduced bidiagonal, upper triangular, lower triangular. 

If M is a diagonal matrix of the form, 

Af = diag(a1,a2,...,ffn)                                         (1.2) 

where we presume 

^^•••^v   IKCT*+i'---'<V)Me>  °k^to1 

and tol is the user-supplied tolerance, (1.1) is called the singular value decomposition 

(SVD). 



If M is a partially reduced bidiagonal matrix of the form, 

M = 

k       n—k 

0      £„ 

k 

n—k 
(1.3) 

where 

\B-l\\-l>tol,    \\B2\\F<e, 

and one of i?   and B0 is upper bidiagonal, and the other diagonal, (1.1) is called the 

partial singular value decomposition (partial SVD) described by Van Huffel [118]. Here, 

we presume they are decoupled, namely, (k, k + 1) entry of M is zero. 

If M is an upper triangular matrix of the form, 

M 

k      n—k 

'R   S^ 

0      T 

k 

n—k 

(1.4) 

where 

\\(ST TT)|L<e,    \\R-l\\:l>tol, 

and R and T are upper triangular, (1.1) is called the URV decomposition (URVD). 

If M is a lower triangular matrix of the form, 

M = 

k     n-k 

11   ^ 

F     G 

k 

n—k 

(1.5) 



where 

(F G)|L<£,    ||I  'll,^^ 

and L and G are lower triangular, (1.1) is called the ULV decomposition (ULVD). 

Here k is the numerical rank of A and e < y/n — k * tol. We use || • || to denote 

the Euclidean norm and || • || p to denote the Frobenius norm of a matrix. 

The SVD has been one of the most important tools widely used in a number of 

fields of science and engineering for decades, mainly because it offers abundant informa- 

tion about the matrix in question. The SVD has many benefits. It provides orthonormal 

basis for important subspaces associated with the matrix including the range (signal) 

and null (error, noise) spaces. 

The URVD and ULVD are particular cases of what Lawson and Hanson [70] called 

HRK decompositions. Both URVD and ULVD were introduced by Stewart [101, 102], as 

an alternative to the accurate but expensive SVD. Stewart also gave methods to update 

2 
these decompositions in ö(n ) operations. 

In fact, all of these decompositions provide valuable information about the data 

matrices. Most importantly for many applications, they provide the orthonormal basis 

for the range and null spaces. For instance, if V is partitioned according to 

V = (V   V ),    V G KnXk, V G nn*(n~k) (1.6) 
1 £ X £i 

then it is not difficult to see that the columns of V give the desired orthonormal basis 

for the approximate null space. 



1.1.2    Modifying the TSOD 

We are interested in computing the TSOD of A when the TSOD of A is known, 

where for updating, 

1 A^ 

T 
\T    ) 

(1.7) 

and for downdating, 

A = 

I   T r 
(1.8) 

V 

Here, we assume appending a new row to A to be the last row of Ä, and deleting the 

first row of A when downdating. The downdating problem is considered more sensitive 

than the updating problem because small singular values of A tend to diminish after 

a downdate, leaving the matrix near singular, and thus can be unstable [99].   On the 

other hand, updating increases all its singular values.   Clearly, refactoring the whole 

3 
decomposition without using the TSOD of A is not practical; it requires ö(n ) operations 

to compute any TSOD. 

1.2    Problem Formulation 

We transform the updating/downdating problem into the rank-one modification 

of the symmetric eigenvalue problem. Since from (1.7) and (1.8), 

AT A AT A    , T 

A  A   — A   A + prr 

= VMTMVT + prrT 

= V{MTM + pzzT)VT 



where p > 0 for updating and p < 0 for downdating, and 

z — 

(      \ 
X 

\y) 

k 

n—k 
(1.9) 

Thus, the problem of modifying the TSOD of A is equivalent to the following 

T 
eigenvalue problem: given a symmetric positive definite matrix A  A with known eigen- 

system A   A = VM   MV   , compute the eigensystem of M  M + pzz  , that is, to find 

an orthogonal matrix V G TZ        such that 

MTM + pzzT = VMTMVT. (1.10) 

However, we do not form the explicit product A   A because of possible loss of 

T information in forming A  A. Furthermore, the eigendecompositions do not, in general, 

preserve the block structure. Instead, we compute orthogonal matrices Ü € 7on    '   ^n      , 

V eTZnXn such that 

U 
M 

VT = 
M 

T 
for updating, (1.11) 

and 

Ü (ZT?) VT = 

(       \ 
0 

{   M   ) \M) 
for downdating, (1.12) 

where M is bidiagonal for the (partial) SVD, upper triangular for the URVD, and lower 

triangular for the ULVD. 



Then A is given by 

Ä = JÜJT 

1 M" 

\  °   / 
VT (1.13) 

where 

V = VV,    Ü = Udi<ig(Ü, I A 

m-1      1 

J =    ( ^rn-l    ° )'     for uPdating> 

and 

l     m-1 

J =   I 0    -^rjJ_j J,    for downdating. 

- T - T In theory, M   M + P-zz    remains positive semi-definite after downdating, but it 

is not always true in finite precision floating-point arithmetic. 

1.3    Importance of the Problem 

Updating and downdating are important in signal processing and statistical appli- 

cations as new observations are added, and the old observations are successively deleted. 

They can efficiently be applied to problems which arise in a number of applications: 

recursive total least squares problems [23, 34], linear regression [112, 123], linear predic- 

tion [113], pattern recognition [16], system identification [60, 105], spectral estimation 

[17, 28, 68], adaptive beamforming [76, 77, 96], image processing/restoration [5, 7, 82], 

adaptive filtering [64], direction finding [2, 73], subspace-based algorithms in signal pro- 

cessing such as MUSIC (Multiple Signal Classification) [94, 95] and ESPRIT (Estimation 
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of Signal Parameters via Rotational Invariance Techniques) [91, 92], and ocean acoustic 

tomography [110]. 

1.4 Issues and Concerns 

Algorithms for modifying the TSOD must have at least the following features: 

Efficiency The algorithm should require as few operations as possible, for example, 

2 ö(n ). This feature would make it possible to implement the algorithms for appli- 

cations that require a real-time processing, where continual updating/downdating 

of the decompositions is required. 

Stability The algorithm should produce correct answers within the uncertainties of 

the given data. Therefore, the computed solution should be as good as our data 

warrants. 

Parallelism It should be easy to implement the given algorithm on a parallel processor. 

It is desirable to develop parallel procedures which achieve the best possible load 

balance and minimize the communication cost, showing high efficiency and a good 

speed-up even for small sized problems. 

1.5 Basic Approach to the Problem 

Our approaches to modifying the TSOD use ideas from "chasing" algorithms 

[1, 93, 115, 125] and from the downdating algorithm due to Saunders [46, 85]. Chasing 

algorithms apply a series of Givens rotations from both sides to annihilate all components 

of z, reducing M to a desired form. These algorithms offer highly regular data movement, 

so powerful pipelining strategies can be used on parallel computers.   A systolic array 
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implementation of a scheme with similar data movement patterns to this one (but not 

similar numerical properties) is implemented in [117]. 

The alternative to chasing algorithms for modifying the SVD is that of finding 

the zeroes of a particular spectral function [10, 25, 49, 53, 54, 67, 97]. However, that 

approach, as yet, does not allow us to separate the singular values into separate blocks 

in the manner discussed in Chapter 6. 

1.6 Main Results 

The following are the main results of this thesis. 

• Blockwise procedures for modifying the TSOD which preserves the separation be- 

tween subspaces associated with the "large" and "small" singular values. 

• An error analysis of these procedures demonstrating that the subspaces of the 

modified matrix are as good as can be expected. 

• Efficient parallel implementation for modifying the TSOD that incorporates clever 

pipelining strategies using highly regular data movement inherited from the chasing 

algorithms. 

1.7 Review of Related Work 

As mentioned in Section 1.2, problems of modifying the TSOD can be viewed as 

modifying the symmetric positive definite matrix followed by a rank-one matrix. Gill, 

Golub, Murray, and Saunders [46] considered a problem of modifying the decomposition 

of a matrix following a rank-one change, where they showed how to construct recurrences 

for the product of Givens rotations in order to modify Cholesky factor. An algorithm 

by Saunders was also described for downdating QR factorization, which has become 
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a backbone of a number of downdating algorithms including those proposed in this 

dissertation. 

Bunch, Nielsen and Sorensen [26] studied a problem of rank-one modification 

of the symmetric eigendecomposition that, in turn, gave a rise to their algorithm for 

updating the SVD [25]. Their method was based on solving the secular equations. 

Dongarra and Sorensen [38] proposed an algorithm that always computes the 

eigenvalues of tridiagonal matrices with high relative accuracy. However, when eigen- 

values are clustered together, their algorithms had difficulties in computing numerically 

orthogonal eigenvectors. 

An improved version was proposed by Sorensen and Tang [97], in which they 

incorporated simulated extended precision to overcome the difficulties of previous al- 

gorithm. However, using the simulated extended precision made the algorithm require 

IEEE floating-point arithmetic. 

With careful rearrangement of computations in solving secular equations, Gu and 

Eisenstat [54] have succeeded in developing a backward stable algorithm which com- 

putes numerically orthogonal eigenvectors without using the simulated extended preci- 

sion. They also observed that by using the fast multipole method of Carrier, Greengard, 

2 and Roklin [29, 30], eigenvectors can be computed in ö{n ) operations as compared 

to ö(n ) for the QR algorithms [47, 48]. They applied this technique further to sym- 

metric tridiagonal eigenproblems [56], bidiagonal SVD problem [55], and the problem of 

downdating the SVD [57]. 

To this end several chasing strategies, which originated from Rutishauser [93], 

have been proposed for updating the SVD [27], reducing bordered band matrices [1, 52, 

115], and their parallel versions [116, 117], and two-way chasing scheme by Zha [125]. 

Zha's algorithm improved conventional one-way chasing procedures by about a factor of 

2. 
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These chasing schemes implemented a number of algorithms for modifying the 

SVD and partial SVD [1,14], updating the URVD [101] and ULVD [102], downdating the 

URVD [87] and ULVD [13], refinement techniques for the URVD and ULVD [104, 100], 

and modifying the ULLV decomposition of two matrices [22, 75]. Parallel versions of 

some of these algorithms were also studied in [81, 103, 124]. 

1.8    Overview of the Dissertation 

In the next chapter, we review some fundamental concepts from linear algebra 

used throughout this dissertation. After introducing notations and basic notions, we 

discuss briefly various types of orthogonal decompositions and their relations to the 

TSOD. Since we assume that the initial TSOD is given for all of our algorithms, we 

describe methods for computing the TSOD as well as their numerical properties. We 

also describe the recursive total least squares (RTLS) problems as a potential application 

for our algorithms. 

Chapter 3 contains a detailed description of basic algorithms frequently used in 

the subsequent chapters. Some of algorithms include those for computing and apply- 

ing a Givens rotation, various chasing algorithms, and the LINPACK [37] downdating 

algorithm. We also give special treatment for 2-by-2 updating/downdating procedures. 

Chapter 4 discusses methods for modifying the ULVD. First, we present a detailed 

description of the ULVD downdating algorithm. An error analysis for this algorithm is 

also given to verify that the accuracy of the computed subspaces for large and small 

singular values is assessed. Finally, we give numerical tests of our algorithm in the 

context of the RTLS. 

An improved algorithm for downdating the ULVD is proposed in Chapter 5. 

When downdating the ULVD of a matrix, a deflation step is necessary to compute its 



11 

numerical rank. We propose an efficient algorithm that almost always guarantees the 

rank-revealing structure of the decomposition after a downdate without the deflation 

process. This always requires some condition estimation. Moreover, we show how to 

track exact quantities of Frobenius norms of all three blocks of the lower triangular factor 

in the decomposition in order to monitor the condition of the downdating problem. The 

algorithm can also be used to update the ULVD with a slight modification. 

In Chapter 6, methods for modifying the SVD and partial SVD are introduced. 

The main feature of these methods is the ability to separate the singular values into large 

and small sets and then obtain an updated bidiagonal form with corresponding large and 

small columns. A perturbation theory for updating and downdating the singular value 

decomposition is also presented. 

We present a fully parallel algorithm for modifying the TSOD in Chapter 7. Both 

cyclic and consecutive storage schemes are considered in parallel implementation. We 

show that the latter scheme outperforms the former on a coarse-grain distributed-memory 

MIMD multiprocessor. We give the experimental results on the 32-node Connection 

Machine (CM-5). 

Finally, we give our conclusion and propose future work in Chapter 8. 
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Chapter 2 

Background 

In this chapter we present briefly important concepts from linear algebra fre- 

quently used throughout the dissertation. For detailed description of each subject, refer 

to [50, 58, 89, 98, 106, 121, 122]. 

2.1    Notation and Basic Notions 

We use the following notations throughout this dissertation. 

1Z Set of real numbers denoted by lower case Greek or lower case 

italic if there is no confusion 

TZn Set of real n—vectors denoted by lower case italic 

jlrnxn set of real m-by-n matrices denoted by upper case ITALIC or 

upper case Greek letters 

/ n-by-n identity matrix, that is, I = (e ,...,e ), where e,   = 

k—l n—k 

(oTXo,i,<V^o)T 

O n-by-n zero matrix 
n J 

T A Transpose of A 

H T A Complex conjugate of A 

A'1 Inverse of A G Tln*n, that is, A~l A = AA~l = J^ 

span^,...,^}    {£"=1/VV0,-6W> 

range(A) {y G K™ :y = Ax,xe Tln} = spanfe^,.. .,aj 

nuU(^) {x £ nm : Ax = 0} 
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rank(A) dim(range(A)) 

X(A) Set of eigenvalues of A, that is, {A £ H : Ax = Xx, 0 ^ x £ 11 } 

(T(A) Set of singular values of A 

cr.(A)     ■ i-th singular value of A in nondecreasing order, that is, cr.(A) — 

a      (A) Largest singular value of A 
rricLX 

a   . (A) Smallest singular value of A 

K(A) condition number of A, K(A) = a      (A)/a   . (A) v   ' i    \   i        maxv   "   miir   ' 

O(-) g(n) = ö(f(n)) if there exist constants c and N, such that, for 

all n > N, we have g(n) < cf(n) [3] 

flop A floating point operation, that is, the amount of work associated 

with an addition, a multiplication, or a square root 

ß Machine unit 

sign(x) x/|z| if x ^ 0; 1 if z = 0 

DEFINITION 2.1 (VECTOR NORMS). Let x £ TZn. Then 

l 
»     2M 

IMIi = ]£ l^-l'   INI«, = mfxlzil'   Wxh =   S xi 
i=l ' \i=l 

DEFINITION 2.2 (MATRIX NORMS). LetAeTZmxn. Then 

\\Ax\\ (m    n \7 
Mil   =max-n-r£,    1141,,=    yV|a..r 

where p = l,2,oo. 
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We use || • || to denote Euclidean norm || • || , and || • ||„ to denote Frobenius norm. It 

can be easily shown that a      (A) = \\A\\. 
ITlcLX 

Next, we devise a notion of distance between subspaces. 

DEFINITION 2.3 ([50, P.77]). Let W = (W1    WJ and Z = (Z     Z ) be orthogonal 

matrices where W ,Z   6 K and W ,Z    £ K     *• .   If S   = range(Wr ) and 

S2 = range(Z1), then dist^,^) = \\W* Z^ = ^1 - ^JW?ZJ. 

Thus, if s'm(0) = dist(5 , S ) for some 6, then 6 is the largest angle between the 

two subspaces. 

DEFINITION 2.4. A matrix A ell        is 

diagonal ifa.. = 0,    i^ j; 
ij 

tridiagonal if a.. = 0, \i — j\ > 1; 

upper bidiagonal if a.. = 0, i > j or j > i + 1; 

lower bidiagonal if a.. — 0, i < j or j < i — 1; 

upper triangular if a.. = 0, i > j; 

lower triangular if a.. = 0, i < j; 

upper Hessenberg if a.. = 0, i > j + 1; 

lower Hessenberg if a.. = 0, i < j — 1. 

DEFINITION 2.5. A matrix A e 1lnxn is 

symmetric if AT = A; 

positive definite ifxTATx > 0, 0^x € Kn; 

positive semi-definite ifxTATx > 0, 0/ x eTZn; 

orthogonal 
T                T 

if A1 A = AA1 = I ; J                                n 

permutation if A = (e    ,..., e    ) where (s.,. 
1                n 

.,s  ) is 
n' 

a permutation of (1,..., n). 
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II ■ II and II • ||p are orthogonally invariant norms, that is, for any x £ 7Z , A £ 

771X71 771 X 771 71X71 
1Z        , and orthogonal matrices, Q £ It and Z £TZ       , we have 

||Qz|| = ||z||,    IIQAZll = ||A||,    ||g^Z|L = ||A|| 

mxn 
In theory, if rank(4) = k for A £ 11        , then we have 

al>o2>...>ak>^    ak+l = .-. = an = 0 

where a. are singular values of A defined in (1.2). However, in practice, c, is not 

exactly equal to zero, but <r, = d(fi), where \i is the machine unit. Therefore, we 

define the numerical e — rank to be the largest integer k such that 

ak>€ 

that is, 

°k > *k+l 

meaning that there exists an obvious gap between the singular values. A number of 

signal identification problems assume a significant gap in the singular value spectrum of 

the data matrix. Thus, approximate range and null spaces associated with the large and 

small singular values can be defined accordingly. 

2.2    Stability of Algorithms 

Let T(x) be a function of the input data x. 
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DEFINITION 2.6. An algorithm for computing T{x) is backward stable if the computed 

solution T(x) is the exact solution of a slightly perturbed problem with data x. 

This definition is similar to that of Bunch [24]. Backward stable algorithms are 

very satisfactory although all of the algorithms proposed in this thesis for modifying the 

TSOD are not backward stable. They are mixed stable as defined in the following sense: 

DEFINITION 2.7. An algorithm for computing T{x) is mixed stable if the computed 

solution T{x) is close to the solution of a slightly perturbed problem with data x. 

Definition 2.7 is used in the context of modifying orthogonal decompositions [21, 

83, 99], and downdating least squares solutions [20]. We will also use this definition of 

stability when we analyze our algorithms in the subsequent chapters. 

2.3    Model of Computation 

The machine unit fi is the smallest number which satisfies 

|//(aop6)-(aop6)| < \i |aop6| (2.1) 

where op is one of the four arithmetic operations, +,—, X,-r,and fl(a op b) is the floating- 

point representation of the exact result a op b. We take the usual model of arithmetic, 

assuming underflow/overflow does not occur, 

//(ooP6) = (oop6)(l + 0,     KI<M- (2-2) 

Most computers take this model except for those without guard digits such as Cray for 

which 

//(aoP6) = o(i + f1)op6(i + y,  i^i,iy <M 
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With this model we may obtain unsatisfactory results in addition and subtraction. 

We also require for our model 

fl{yß) = yß{l + 0,     M\<^   x>°- (2-3) 

2.4    Orthogonal Factorizations 

Orthogonal decompositions play an important role in a number of problems in 

matrix computations such as least squares and eigenvalue problems. In this section 

we review two special orthogonal transformations: Householder reflections and Givens 

rotations, and a family of orthogonal decompositions that can be computed by a series 

of application of these transformations. 

2.4.1    Householder Transformation 

A Householder transformation (reflection) of order n takes the form 

H = I  - 2vvT/vTv (2.4) 
n 

where v is called a Householder vector. It is easy to verify that H is symmetric and 

orthogonal. The Householder transformation can be used to annihilate a number of 

components of a vector. For example, let x € TZ . If we choose v such that 

v. = 0,    i = 1,..., k — 1 
i 

v. = x.,     i = k + 1,.. .,71 
i       i 
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where 

2^ s = -s\gn(xk)(i:T!=kxi) 

then we obtain 
7 ■ 

Hx = {xvx2,...,xk_rs,0,...,0)   . 

Note that we always choose s so that s and x, can have opposite sign to prevent the 

loss of precision in the computation. 

2.4.2    Givens Transformation 

When one wishes to zero elements more selectively, Givens transformations (ro- 

tations) do the best job. A Givens rotation takes the form 

J(i,j,0) = 

1    •••     0 0    •••    0 

where c = cos(ö) and s = sin(ö) for some 6. 

n  ., 
Given a vector x E.TZ , if we choose 

—x. 
3 Xi "j I 2 ,    2 c=—,     s = —-,     p = \X. +x ., 

p p V   *        3 
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then we obtain 

J(iJ,0)TX = (xV--;Xi_VP,Xi+V---,*k_V0,Xk+V--;Xnf. 

Algorithm 3.2 described in the next chapter computes c and s without causing overflow 

and underflow in computing p. 

2.4.3    Rank Revealing QR Factorization 

The QR factorization of an m-by-n matrix A is given by 

'^ 

\°/ 
A = Q 

« = («! Q2),   Q^nnxn
% Q2e7emx(m-n) 

(2.5) 

where Q £ TZ is orthogonal and R 6 It        is upper triangular. 

If A has full column rank, the columns of Q spans range(^4). However, when A 

is near rank-deficient, and computing orthonormal bases for range(A) and null(A) is of 

interest, the factorization of the form (2.5) is obviously inadequate. 

It can be shown that with a careful rearrangement of columns of A with some 

pivoting, one can produce another QR factorization which reveals the numerical rank of 

A. A rank-revealing QR (RRQR) factorization of A 6 1Z is any decomposition 

k        n—k 

RU    R\2 

AIl = Q 0      R 

0 

22 

0 

n—k (2.6) 
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Q = (Q, Q2),   Q1eKmxn,Q2eKmx{m-n) 

where R and R are upper triangular, R is well-conditioned, ||Ä ||~ « cr,(A), 

H-ß || « er, ,(^4), and II is a permutation matrix. Here, A; is the numerical rank of A. 

Note that ||-R19|| is not necessarily small compared to ||Ä ||. Thus, the factorization 

does not produce explicitly the approximate null space of A. 

Chan [31], however, shows that RRQR factorization may produce the approximate 

null space for A with high accuracy when there is a large gap in the singular value 

spectrum of A although that may not be a practical assumption in some applications. 

His algorithm incorporates several techniques such as an efficient condition estimation 

and column pivoting. His algorithm also guarantees an RRQR factorization for a high- 

rank problem. 

Using similar ideas, Foster [44] independently developed a stable algorithm for 

determining the numerical rank of a matrix without requiring column interchanges. Hong 

and Pan [62] recently showed that the permutation Ü always exists, and gave a method 

for constructing such permutation. However, because of the high cost required by the 

procedure, it has more theoretical than practical value. 

2.4.4    Complete Orthogonal Decompositions 

It turns out that with an appropriate choice of a general orthogonal matrix Z £ 

,nxn TZ        (considering permutation matrices as a special class of orthogonal matrices), one 



can reduce R in (2.6) even further so that ||Ä    || becomes small as well: 

AZ = Q 

k        n—k 

Rn   R\2 

o    £„ 
22 

0 0 

it 

n—k   , 

z = (z1 z2),   z1ennxk, z2enn*(n k) 

where ||Ä     ||      « a, (A), and 
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(2.7) 

\Ä22/ 
"Vl^ 

Then, it is easy to see that columns of Z   provides the orthonormal basis for the ap- 
Li 

proximate null space. 

2.5     Computing the TSOD 

2.5.1     Computing the Singular Value Decomposition 

A standard way of computing the SVD of A G TZ involves two steps: bidiag- 

onalization and computation of the SVD of resulting bidiagonal matrix. The first step 

771X 771 
requires to find products of Householder transformations, U = U •■•U        £ 11 

and V = V, • • -V    , € 1ZnXn such that 
1 n—1 

T 
U1 AV 

fB^ 

\°J 
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where B is upper bidiagonal. Then, we compute orthogonal matrices P,Q E TlnXn such 

that 

B = PZQT,    S = diag(c71,...,a7}). 

Thus we obtain 

A = X 

I      \ 
S 

\°/ 
YT 

where X = U diag(P, /       ) and Y = VQ. 

2 
The whole process requires ö(m n) flops.  The second phase of computing the 

SVD of bidiagonal matrix can be done by QR-iteration [47, 48] which is implemented 

in the LINPACK [37]. But the singular values computed by this method differ from the 

true singular values by at most p(n) ■ ß • a      (A), where p(n) is a moderately growing max 

function of n. Thus, large singular values are computed with high relative accuracy, but 

small ones are not generally accurate. 

Demmel and Kahan [35] developed an algorithm for computing all the singular 

values of a bidiagonal matrix to maximal relative accuracy independent of their mag- 

nitudes. Their algorithm implemented in LAPACK [6], is essentially the QR-iteration 

incorporated with a "zero-shift", which is often faster than the standard algorithm im- 

plemented in the LINPACK. 

Fernando and Parlett [40] simplified the zero-shift bidiagonal algorithm by Dem- 

mel and Kahan even further by replacing a zero-shift QR step with two steps of LR 

iteration that implement the qd algorithm. We describe the qd algorithm in the next 

chapter. 

Other methods for computing all the singular values with high relative accuracy of 

a bidiagonal matrix include bisection [15], Rayleigh quotient iteration [88]. But they are 
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not competitive in speed with the zero-shift bidiagonal algorithm and the qd algorithm, 

although they are probably the most parallelizable algorithms for this problem. 

It is a well-known fact that reducing a dense matrix into bidiagonal form can 

introduce large relative errors in its singular values. The Jacobi method for computing 

the SVD of a dense matrix is much slower but more accurate than any algorithms that 

first bidiagonalize the matrix [36]. In this iterative algorithm, a series of Givens rotations 

are applied to pairs of rows and columns to reduce off-diagonal entries. With a clever 

ordering [74], the algorithm can be implemented in parallel, being competitive in speed 

with other methods. 

2.5.2    Computing the ULV and URV Decompositions 

The ULVD of A € 72. can be obtained by computing its QL factorization 

A = Q 
I L^ 

\<V 

772 X 772 _ 71X 72 
where Q G 71 is orthogonal and L £ 71       lower triangular, followed by computing 

the ULVD of L using the deflation technique described in [100, 102]. First, we estimate 

an approximate left singular vector u of unit norm of L which corresponds to a (i) 

using some condition estimator. A survey of popular condition estimators is given in 

[61]. Then, we compute an orthogonal matrix Q £ 71        such that u  Q = e    and an 

— 72 X 71 
orthogonal matrix P € 71       , such that 

an{L) = \\JL\\ = \\(UIQ)(Q
T

LP)\\ = ||e^(gTXP)||, 
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-T which is the size of the last row of L. Here, P is applied to restore Q   L into the lower 

triangular form. We repeat this deflation process until all the small rows of L appear in 

the decomposition yielding the ULVD of A of the form (1.5). 

Similarly, the URVD of A can be obtained by computing its QR factorization of 

the form (2.5) followed by computing the URVD of R using the deflation steps. This time 

we estimate an approximate right singular vector v   of unit norm of R which corresponds 

nxn -T 
to a (R), and then compute an orthogonal matrix Q 6 Tl        such that Q   v   = e   and 

an orthogonal matrix P £ TZ       , so that 

an{R) = \\RvJ = \\(PTRQ)(QTvn)\\ = \\{PT RQ^J 

which is the size of the last column of R. Here, P is applied to restore RQ into the 

upper triangular form. We repeat this deflation process until all the small columns of R 

appear in the decomposition yielding the URVD of A of the form (1.4). 

2.6    Subspaces from the URV and ULV Decompositions 

In this section we present error bounds for accessing the accuracy of subspaces 

computed by the TSOD, particularly, the ULVD and URVD. The discussion that follows 

is largely abridged from that of Fierro and Bunch [41, 42]. 

Let the SVD of A G ftmXn, m > n be 

A = U 
( ~\ 

\°/ 
VT, (2.8) 



where 

k      n—k     m—n k      n—k 

"= ("i "2   ",). y= (vi v
2), 

and E has the form (1.2), and let the URVD of A be 
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A = U R 
V 
\ ° / 

Vi (2.9) 

where 

k       n-k k       n—k 

UR =    [URl    UR2     URs),     VL=    [VR,    VR2\ 

and C    has the form (1.4), and let the ULVD of A be 

A = UW 

\ ° / 
VT (2.10) 

where 

Jt       n-k k       n-k 

UL=    [hi    UL2     UL3 h    VL=    [VL1    VL2 

and Cj. has the form (1.5). Here, U, UR, UT, V, V , and V   are orthogonal matrices. 

Then we have the following bounds on subspaces computed by the URVD and 

ULVD, which are associated with the large and small singular values. 
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THEOREM 2.1 ([42]). Let A e KmXn have the SVD of the form (2.8) and the URVD 

of the form (2.9). Suppose a   . (R) > ||T||. Then 

\\S\\ T o-   . (R) \\S\\ 
nJ'l'Ll < IK  V' <    2 2 (2.11) 

minv   '     "   " 

WTV u<   mm (2,2) 
2    Rl       a  . (R) - \\T\\2 

minv   '     "   " 

THEOREM 2.2 ([42]). Let A £ nmxn have the SVD of the form (2.8) and the ULVD 

of the form (2.10). Suppose a   . (L) > \\G\\. Then 

IVTV   }l <      111 Ml (2,3) 
1    L2       o-2. (L) - \\G\\2 

mmv     / II       II 

ll^ll       < wTy    || < !!£M  (214) 
|X|| + ||G||-||t;2(;Llll-crmin(X)-||G|| (2-14) 

From these theorems we immediately realize that the quality of subspaces com- 

puted by the URVD and ULVD do not depend on the gap in the singular value spectrum, 

which is required by the RRQR decomposition. We also observe that by keeping ||5|| and 

||JP|| small, we can obtain highly accurate subspaces. Several ways of achieving this are 

described in [41, 42, 104]. It can be also argued that the ULVD computes the numerical 

null spaces more accurately than the URVD, whereas the URVD yields a better estimate 

of the numerical range. 
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2.7    Total Least Squares Problem 

2.7.1    Problem Formulation 

The classical linear least squares (LS) problem is given by 

or equivalently, 

min  \\Ax - b\\,    A € ft        , b G ft™ (2.15) 
x£Un 

min        ||e||,    e e ft™ (2.16) 
o+e€range(.A) 

where A is data matrix whose rows contain measurements from the model under con- 

sideration, and b is the observation vector. Here, we presume A is free of error and b 

is subject to error. However, it is unrealistic to take error-free measurements from the 

model. 

The total least squares (TLS) problem assumes that there are errors in the data 

matrix A as well as the observation vector 6. The TLS problem has the formulation 

HeA+*,ll(£e)llr (2'17) 

which is analogous to (2.16). 

The errors-in-variables problems have a long history in statistical literature. In 

the field of numerical analysis, this problem was first introduced by Golub and Van 

Loan [51] and then studied extensively by Van Huffei et al. [114, 118]. If eTQ and 

(ErpT c erpT Q) are the LS and TLS corrections to (2.16) and (2.17), respectively, it can 

be shown that 

^ETLS eTLS^F * UeLsH 
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2.7.2    Basic Solution 

The TSOD gives an elegant way of solving the TLS problem. Suppose the TSOD 

of (A b) G ftmx(n+1) is given by 

(A  b) = U 
(M) 

vT, V = 

it n-k+1 

V2 

\°) V 

where U E H     m an d V € ft("+1)x("+1) are orthogonal, and M G ^n+1)x("+1) has 

one of the forms (1.2)-(1.5). Then V = (v, , ...,v ) is a basis of the noise subspace 

of (A b), and the minimum norm TLS solution is given by computing a Householder 

transformation H £ TV-n    '   ^       ' such that 

V2H = 
Y   d 

0    S 
(2.18) 

If «5 / 0, the TLS solution x is given by 

x = —d/S. (2.19) 

See [118] for details. In particular, Golub and Van Loan formulated the solution based 

on the SVD. Van Huffel and Zha [119] also formulated the solution to the TLS problems 

based on the URVD and the ULVD without the explicit computation of the approximate 

null space basis V . 
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2.7.3     Recursive Total Least Squares 

When one does not have complete knowledge of the data in a given model, recur- 

sive procedures make it possible to achieve satisfactory results. The algorithm is given, 

to begin with, incomplete knowledge about the environment, and modifies the processing 

model in an adaptive fashion as data are received sequentially. 

In recursive TLS problem, it is required to append a new row to the data matrix 

A and an observation to b, and the new information must be incorporated into the TLS 

solution. It is also desirable to delete the oldest observation from the existing data. 

The updating and downdating problems of the form (1.7)-(1.8) are associated 

with the sliding window method [4, 19, 32]. At each step of the sliding window method 

with the window size s, an s X n data matrix is constructed from an m X n observation 

matrix A by adding a new row to the data matrix in the previous window and deleting 

the oldest row from it. In step j, the row s + j of the observation matrix is added and 

the row j is deleted, giving the data matrix A.: 

'M,= 

/    T 
aj-s+l 
T 

aj-s+2 

T 

T a. 
J 

■ Vi 

/    T 
ajs+2 
T 

aj-s+3 

T a. 
J 

T 
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An alternative approach is to use an exponential forgetting factor ß (0 < ß < 1) 

[59]. In this approach the modified matrix in (1.7)-(1.8) is given by 

A = 
<ßA' 

\    • ) 

(2.20) 

Here, the effect of old observation diminishes exponentially as continuous updating is 

required. However, the explicit removal of the observation, as in the sliding window 

method, makes it simple to estimate the rank of modified matrix, that is, it remains the 

same or increases by one for updating, or decreases by one for downdating. Thus, an 

indefinite number of condition estimation steps is not necessary for rank detection as 

done in [101, 102]. 
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Chapter 3 

Basic Algorithms 

This chapter contains detailed description of basic algorithms frequently used in 

the subsequent chapters. Throughout the dissertation we follow the convention of the 

MATLAB [78] in describing the algorithms. Some of the algorithms include those for 

computing and applying a Givens rotation, various chasing algorithms, and the LIN- 

PACK [37] downdating algorithm. We also give a special treatment for 2-by-2 updat- 

ing/downdating procedures. 

3.1     Givens Rotations 

This section contains simple routines for constructing and applying Givens rota- 

tions described in Section 2.4.2. 

ALGORITHM 3.1. This function computes complex absolute value of x + iy, that is, 

= yfc2 • -2 t = yx   +y 

function   t = cabs(x,y) 

if  |x| > \y\ then 

r <— y/x; t <— \x\* y 1 + r 

else 

r <- x/y; t *- \y\ * y 1 + r 

endif 

end 
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ALGORITHM 3.2. This function computes c = cos(0) and s - sin(0) for some 9 such 

that 

/ \ 
c     s 

—s    c 

I   \ 

\hJ 

( 
cabs(a, b) 

0 

procedure formrot(a, b, c,s) 

if \a\ > \b\ then 

r <— b/a; factor <— V1 + r 

a <— \a\ * factor; c *— 1/factor; s <— r * c 

else 

r <— a/b; factor <— y 1 + r 

a <— |6| * factor; s «- 1/factor; c <— r* s 

endif 

end 

ALGORITHM 3.3. This procedure applies the plane rotation defined by c and s to rotate 

(x   ,y  )   . 

procedure applyrot(a;, y, c, s, ri) 

temp <— c * x(l: n) + s * y(l: n) 

y(l: n) < s * x(l:n)+ c* y(l:n) 

x(l: n) <— /emp 

end 
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3.2    Chasing Algorithms 

3.2.1    A Chasing Routine for a Bidiagonal Matrix 

The following routine, for a given vector z and a diagonal matrix B, finds orthog- 

onal matrices Ü and V such that 

B = ÜTBV,    VTz = pev    p = \\z\\ (3.1) 

where B is lower bidiagonal. 

Fig. 3.1 illustrates the reduction steps. The right arrows -» denote rotations 

from the left on two particular rows, whereas the downarrows Ü denote rotations from 

the right on two particular columns. Here z denotes elements in the vector z, b denotes 

elements in B, and z or b denotes an element about to be zeroed out. We now formally 

present the algorithm below. 

ALGORITHM 3.4 (CHASING ALGORITHM FOR BIDIAGONAL REDUCTION). Given a diag- 

onal matrix, B = diag(7(l: n)), and a vector to be reduced, z(l: n), the following chasing 

scheme produces a lower bidiagonal matrix B such that B — bidiag(7(l:n),^>(l:n- 1)) 

and satisfies (3.1). 

procedure forchase(7, <j>, z, n) 

formrot (z(n — 1), z(n), en, sn) 

e < sn * j(n — 1);  f(n — 1) <— en * 7(71 — 1) 

(f>(n — 1) <— sn * 7(n); 7(n) <— en* 7(71) 

formrot (7(71), e, en, sn) 

applyrot (en, sn, (f>(n — 1),7(71 — 1), 1) 

for i <— n — 2,..., 1 

formrot (z(i), z(i + 1), en, sn) 
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Fig. 3.1.    Forward Chasing Procedure for the Bidiagonal Reduction 
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e < sn * f(i); f(i) *— en* f(i) 

<j)(i) <— sn* 7(1 + 1); f(i + 1) <— en * • y(* + i) 

d *- en* (f>(i + 1); <$>(i + 1) <- sn * </>(i + 1) 

formrot (7(1), e, en, sn) 

applyrot (en, sn, </>(*), 7(1 + 1),1) 

applyrot (en, sn, d, <j>{i + 1), 1) 

for j <— i,..., n — 3 

formrot (<^(j), d, en, sn) 

applyrot (en, sn, 7(; + 1), 4>(j + i),i) 

e <- sn* j(j + 2); 7 (.7 + 2) <- en * 7(j + 2) 

formrot (<fi(j), d, en, sn) 

applyrot (en, sn, 7(j + l),<f>(j + i),i) 

d<-sn* <ß(j + 2); <j>(j + 2) *- en * <f>(j + 2) 

endfor 

formrot (<j)(n — 2),d, en, sn) 

applyrot (cn,sn,^(n— \),4>{n— 1), i) 

e *— sn* 7(n); 7(n) <— en * 7(n) 

formrot (7(n — 1), e, en, sn) 

applyrot (en, sn, (f>(n — l),7(n),l) 

endfor 

end 

This algorithm constructs and applies 
2 n   — n Givens rotations. A similar proce- 

dure backchase to that illustrated above can be used to produces orthogonal matrices 
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Ü,V £TZnxn suchthat 

B = ÜTBV,    VTz = pen,    p=\\z\\ (3.2) 

where B is upper bidiagonal. 

For the sake of brevity, we do not present backchase. It is computed by reversing 

the two vectors 7(1: n) and (j>(l: n - 1), performing forchase and reversing the vectors 

back. The algorithm would just have the loop in forchase go backward instead of 

forward. 

3.2.2    A Chasing Routine for a Lower Triangular Matrix 

We now describe a simple chasing routine for a lower triangular matrix. This 

routine, for given a vector z and a lower triangular matrix C, finds orthogonal matrices 

D and V such that 

C=ÜTCV,    VTz = pev    p=\\z\\ (3.3) 

where C is lower triangular. 

Consider the 4x4 case in Fig. 3.2. We state the procedure lchase formally below. 

ALGORITHM 3.5. Given a lower triangular matrix C and the updating vector z, this 

procedure performs a chasing operation on C, and produces a lower triangular matrix 

C that satisfies (3.3). 

procedure lchase(c, z, n) 

for i *- n — 1,..., 1 

formrot (z(i),z(i+ l),cn,sn); 

e < sn * c(i, i); c(i, i) <— en * c(i, i); 

applyrot(c(i + 1: n, i), c(i + 1: n, i + 1), en, sn, n - i); 



37 

I   i 
( z    z    z    z\ I 

c 
c    c 
c    c    c 

z    z z    0\ 

V 

c 
c c 
c c c c 
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\c    c    c    cI \c    c    c    cI 
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Fig. 3.2.   Chasing Steps for a Lower Triangular Matrix 

formrot (c(i + 1, i + 1), e, en, sn) ; 

applyrot(c(i + 1,1: i), c(i, 1: i), en, sn, i); 

endfor 

end 

A similar chasing procedure can be specified for an upper triangular matrix when 

modifying the URVD. Stewart [102] points out that if the matrix C is from a rank 

revealing decomposition with k large rows and n — k small rows, this algorithm can yield 

k + 1 large rows, thus the rank revealing nature of C may be lost. 

3.3    qd Procedure 

It is easy to find an orthogonal matrix Q as a product of Givens rotations such 

that 

B = QB 
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where B is lower bidiagonal and B is upper bidiagonal. This is the same as one unshifted 

Fernando-Parlett qd step [40], hence the name. Fig. 3.3 illustrates the reduction steps 

for a 4 x 4 case. 

(h-       \ 
(b   b           \ lb   b           \ ib b       \ 

b  b —► b (       b    b b b 
b b -+ b    b A b b 

\           b    bj \           b   b) -\       b b) \                b) 

Fig. 3.3.   One Step of qd Procedure 

ALGORITHM 3.6. This procedure produces the orthogonal factorization of a lower bidi- 

agonal matrix. 7(1: n) is the diagonal on input and output. <f>(l: n — 1) is the subdiagonal 

on input and the superdiagonal on output. 

procedure qd (7,^, n) 

for i «— 1,.. .,n — 1 

formrot(7(i), 4>(i), en, sn) 

(f){i) <— sn* f(i+ 1) 

j(i + 1) <— en * j(i + 1) 

endfor 

end 
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3.4    The LINPACK Downdating Procedure 

The following downdating procedure due to Saunders [46] is considered the most 

accurate downdating procedure that does not require information from the first row of 

U in (1.1) [20] (if we have that first row, we obtain a procedure that is backward stable 

in the strong sense). It is the procedure that is implemented in the LINPACK [37]. 

ALGORITHM 3.7 (THE LINPACK DOWNDATING PROCEDURE). Given M e"R.nXnand 

n - T - T z G TZ , this algorithm computes the downdated matrix M, that is, M   M = M   M — 

T zz   . 

Step 1. Solve 

T M   a = z (3.4) 

If ||a|| > 1 declare M   M — zz    indefinite and stop. Otherwise go to Step 2. 

Step 2. Compute a = \/l - ||a||2 and Q = ^ • • -Qn £ ft(n+1)x(n+1) be a prod- 

uct of Givens rotations, Q. = J(l,i+ 1,0.), i = 1,.. .,n such that 

Q 

I    \ 
a 

\a ) 

= e. 

Step 3. Compute 

Q 

( n \ 

\M J 

I  T\ 

VM j 

We note that if M is upper or lower triangular, it is simple to choose Q as a product 

of Givens rotations Q. ,Q„,.. .,Q so that M remains upper or lower triangular. Pan 

[85] shows that for M upper triangular, this method can be sped up by combining the 

forward substitution phase with the application of the Givens rotations. 
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3.5    2x2 Updating/Downdating Procedure 

The following algorithm computes orthogonal matrices G   = J(l, 2, <j> ), G   = 

J(l,3,<£_) € ft3*3 for some </>., t = 1,2, such that 

'o oN 

2   6 « a   6 

1°   CJ 
(3.5) 

ALGORITHM 3.8 (2x2 UPDATING). Given scalars a, b, c, £, p, this algorithm computes 

scalars 2, b, c of an updated matrix defined in (3.5). 

function [2,6,c] = up22 (a,b,c,£,p) 

2 = cabs(a, £); ä = a/2; £ = £/2 

b = üb — £/>; c = ap — £6 

end 

Similarly we give an algorithm, which is based on Algorithm 3.7 for downdating a 

2x2 matrix, that is, computing orthogonal matrices Q - .7(1,3,0 ),£? = J(l,2,02) € 

1Z        such that 

0   2   6 

0   0c 

T   T 

/ \ 
a 0 0 

ß a b 

7 0 c 

(3.6) 

where we solve 

a   6 

0   c 

\T/  „\       /     \ 
ß 

v7/ 
,    a = \ll-ß2- 

\p ) 

(3.7) 



41 

where J(i,k,6) is a Givens rotation in the (i,k) coordinate plane for some 0. 

ALGORITHM 3.9 (2x2 DOWNDATING). Given scalars a, b, c, ß, and 7, this algorithm 

computes entries of downdated matrix defined in (3.6), namely, a, 6, and c. 

function [5,6,c] = down22 (a,b,c,ß,f) 

a — yjä + 7\/5 — 7 

p = 7c/5 

c = ac/S;  5 = 5a;  b = 5b — pß 

end 
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Chapter 4 

Modifying the ULV Decomposition 

4.1    Introduction 

771X7Z We give methods for modifying the ULVD. Rewrite the ULVD of A g 72. of 

(1.1) as 

A = U 
(C^ 

\° / 
VJ (4.1) 

771X 772 71 X 71 
where U ElZ and V G 1Z        are orthogonal, and 

C = 

k      p-k     n-p 

LOO 

F     G       0 

0      0        0 
/ 

k 

p—k 

n—p 

(4.2) 

so that our algorithm of ULVD separates out columns that are exactly zero.   Here C 

takes the position of M in (1.1). 

We also rewrite z of (1.9) as 

z = VTr = 

I       \ 
x 

y 

\yoJ 

k 

p-k 

n—p 

(4.3) 
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As in the updating routine of Stewart [102], the matrices C and V can be produced 

2 
using O(n) Givens rotations, thus updating the factorization in ö(n ) operations. Our 

approach to downdating the ULVD (4.2) uses ideas from chasing algorithms [102] and 

from the downdating algorithm due to Saunders [46, 85]. 

The following are the main results of this chapter: 

1. A blockwise procedure for downdating the ULVD that yields 

/ - \ L    0    0 

C=      F   G   0 (4.4) 

0    0    0 

where 

\\{F G)\\ < \\{F G)\\,    \\{F G)\\F < \\{F G)\\p 

and X and G are lower triangular, and the blocks are conformal with (4.2). 

T T 2. A downdating algorithm that works whenever L  L — xx    is positive definite, the 

same as if we were downdating only L. Our technique maps back onto the original 

matrix A in a more satisfactory manner than the technique given by Park and 

Eiden [87]. 

3. An error analysis of this procedure showing that the singular subspaces of the up- 

dated matrix are as good as can be expected. We also give some new perturbation 

results showing that the condition of the downdate is related only to the L block 

in (4.4). Thus tracking the ULVD is a very stable method for tracking subspaces. 

Our ULVD downdating algorithm is proposed in detail in Section 4.2. Section 4.3 

gives an error analysis of the algorithm.  The accuracy of the computed subspaces for 
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large and small singular values is assessed. In Section 4.4, we give numerical tests of our 

algorithm on recursive total least squares problems. 

4.2    A Procedure for Downdating ULV Decomposition 

4.2.1    Description of the Algorithm 

We introduce the following algorithm for downdating the ULVD. Our procedure 

T T produces a downdated matrix C if for L and x defined in (4.2) and (4.3), L  L — xx    is 

positive definite. 

ALGORITHM 4.1 (PROCEDURE FOR ULVD DOWNDATING). Given a lower triangular ma- 

trix C of the form (4.2) and a vector z of the form (4.3), this algorithm finds a lower 

triangular matrix C of the form (4.4) and orthogonal matrices Ü and V satisfying (1.12). 

Initially, V = V. The components in y   are ignored (will be justified by Proposition 4.2). 

(i) (i) Throughout the description of this algorithm LK ' and GK ' denote lower triangular ma- 

trices, jf = [JP
(i)]Te1, and g® = e^G®^. 

Step 1. Compute orthogonal matrices Ü , V 6 VSP~ >x^p~ > such that 

G{l) = Ü^GVv    V^y = pe{P-k\    p = \\y\\ 

Also, compute 

fM = Ü*F. 

Update Ü - d\*g(Ik+vOvI      );V <- VdiagfJ^,J      ). 
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Step 2. Find an orthogonal matrix U   G HK      '   v      ; such that 

/,(» 

v °   »ff/ 

/ 

= 01 
L 0 

\ 

Define J1' ' = (I-e e  )F^ \ that is, as F^- ' with its first row set to zero. Update 

Step 3. Use Algorithm 3.7 to find a vector a £ 11 , scalar a, and orthogonal matrix 

^ (^l)x(^l)suchthat 

[LWfa = x,    a = y/l - ||a||2,     f/„T 
a 

Va/ 
= er (4.5) 

Then compute 

/     T   \ x 

i   i(2) 
= aT 

3   I    .(1) 

Step 4. Compute 

if P < 5ii   then 

p = a     (p — h   a) 

(A 

\h) 

(~\ 
= ui 

\h J 

(3) ,  (2),2      ~2 
'   9n ~Wn] ~p 
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else  9n   <P 

1 A    ^ p-bp 

\       n      I 

( „(2) \ 
= u: 'ii 

V  "  I 
^ff- (4.6) 

where 6p = p — (ag^ ' + a  h). 

endif 

Define U   = J(l,k+ 1,0) as the Givens rotation with en = cos(0), sn — sin(0) 

such that 

en = < 
,g>/,g>   ifpg^o 

,(2)_ if<7^=0. 

Update Ü <- tffr diag(£/,,7      ). 
4 O      72—ft 

Step 5. Find an orthogonal matrix V 6F      '   ^      ' such that 

(L^  o) = (J<2) 7^>2 

(F(3)   G(4)) = (F(2)   G(3))diag(v2,/n_it_i) 

Update V - Fdiag^, J^J. If ^ # 0 

C = 

(  - \ 
L    0    0 

f1   G   0 

0    0    0 

x(3) 0       0 

F(3) G<4>    o 

0 0       0 

and go to Step 7; otherwise, go to Step 6. 
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Step 6. If g\ ' = 0 then /j ' = 0 also since it was formed from <r ' using V . Thus 
11 1 Ll A 

p—k 

k 

■p—k 

(L^       0 

^(3)    G(4) 

it p-k 

X 0 

0 0 

F cF> 

\ 

I 

k 

1 

p-k-1 

where G^ ' is a lower Hessenberg matrix.   We then find an orthogonal matrix 

V  G n(p~k)x(p~k) and an orthogonal permutation matrix Ü, G ft(p_fc)x(p~fc) 

3 «> 

such that 

Update U 

form 

dTG^\ = 
5 o fö °1 1° °J 

p-fc-1 

1 

i/diag(7)k+1,i/5,/n_p);y <- Vdiag^,^,/^). Thus C has the 

it     p-k-1     n-p+1 

f , .      \ 

c = 

X 0 0 it 

F G 0 p-k-1 

0 0 0 n-p+l 

Step 7. Perform a ULVD of X to determine its numerical rank. If we have deter- 

mined the rank of L correctly, the rank of X should be k or k -1. Make appropriate 

adjustments to F and G. 

We give an expression for U in the statement of the algorithm, but our analysis 

assumes that the left orthogonal matrix U is not saved. Although it is not computed by 
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the algorithm, for the discussion that follows we need to define the vector z by 

-T 
z = V  z = 

(       \ 
X 

\yo/ 

k 

p—k 

n—p 

(4.7) 

2 2 
Algorithm 4.1 requires Ilk + 6(p-k)  + 12k(p — k) + ö(p) flops for Steps 1-5 and 

2 
Ak   + O(k) flops for Step 6. When V is modified, additional 6n(p — k) + 6nk flops will 

2 
be required. The deflation step requires about vk  + 16nk flops, where v is the constant 

depending upon the condition estimators used [61]. 

Fig. 4.1-4.2 illustrate the action of our algorithm on a 6 x 6 matrix with k = 3. 

Here /, g, and / denote components of L, F and G, and x, y, and h are components 

of those vectors. Rightarrows and downarrows denote premultiplication and postmulti- 

plication by orthogonal transformations from the left and from the right, respectively. 

Here p, h and h have meanings consistent with those in the statement of Algorithm 4.1. 

ik — — 

A set of —► denotes the applications of U  and U  in Steps 3 and 4 when downdat- 
o 4 

(2) 
ing L and g> '. Step 6 is illustrated in Fig. 4.2. Note that for Steps 3-5, the components 

x and y have a different interpretation from Steps 1 and 2 above, they are now the values 

"downdated." To illustrate their action properly, Ü   and D   are given in reverse order 

rather than the order that they are actually applied. 

REMARK 4.1. This algorithm works if 

p—k     n—p 

'a     o^ 

0 0 

p—k 

n—p 
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(b) Steps 3-5 

Fig. 4.1.    Reduction Steps for Downdating the ULVD 
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Fig. 4.2.   Reduction Steps When G Becomes Singular 

T   T T 
is substituted for G and (y    y  )    is substituted for y.   That is, it is not necessary 

to explicitly handle the zero block, it can be made part of G.   That is the original 

formulation in [102]. However, if that is done, whenever y   ^ 0, any zero diagonal will 

T   T T be chased to the g     position, all of (y    y. )    will be treated as "noise". If ||G|| > /x, 

as is often true in practice, then \\y\\ is possibly significant whereas y   can only result 

T from computing errors from computing (4.2) or multiplying z = V   r. Our formulation 

neglects part of y only if the downdate of 

' L    ^ 

F   G 

T   T T with (x    y   )    cannot be done.  In updating, there is no similar benefit to separating 

out the zero block. 



51 

REMARK 4.2. We note that (4.6) in Step 4 is equivalent to computing 

/      \ 
P = *l t 9^ + (Sp)a X 

h +(6p)a 
,    Sp = p-(ag^ + a  h) 

I 

-T T T ~ 
since U    maps the additive noise vector (Sp)(a a  )    into (Sp)e . Only h is of interest 

in the computation. 

C satisfies (4.4) as is proven quickly in the following proposition. 

PROPOSITION 4.1. For the matrix C resulting from Algorithm 4-1 we have (4.4). 

Proof. This proof is a straightforward consequence of facts about orthogonal 

transformations. Every step except two and four either does not affect F and G or just 

multiplies them on the left or right by orthogonal transformations, thus for those steps 

we need only invoke orthogonal invariance. 

For Step 2, we have that 

FW = FW-e/iFU, 
( , ^ /           \ 

h 
= v?> 

0 

a® 
2 «W \yu  ) ^11   / 

are Thus ||(.F(2)   G(2))||F < \\(FW   G(1))||F foUows from the fact that F(2) and G(2) 

no larger than F^ ' and G^ ' componentwise. For the Euclidean norm, we note that for 

any vector 

M\     k 
v = 

„(2) 
/ 

p—k 
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thus 

+<VM42VH^(2V 
>    ||(f(2)  G(2)M|2 

for all v G 72. . A simple argument on the definition of the Euclidean norm yields the 

inequality ||(F(1)   G(1))|| > ||(f(2)   G(2))||. 

Step 4 clearly produces \g\J\ < Isii I- The same argument as above yields 

||(ir.(2)   G(3))|| < ||(F(2)   G(2))|| 

and likewise for the Frobenius norm. Thus we have (4.4).  D 

In the absence of rounding error, we can show that the "additive noise" in Step 4 

satisfies an important consistency property. We assume that C is orthogonally equivalent 

to A + 6A where 6A consists of errors from previous orthogonal transformations. 

PROPOSITION 4.2. Assume that Algorithm 4-1 is performed in exact arithmetic, that U 

~ ~ _     ~T 
and V in (4-1) o,re exactly orthogonal. Let U and V be as in (1.13) and let z = V   r be 

~ T 
as in (4-7)- Assume that Ue   = e , and that z = V  r is computed exactly. Also assume 

that C satisfies (4-1) with backward error 6A, that is 

A + 6A = 

T .   , T \ r   + or 

Ä + 6A 
= U 

(c^ 

\° J 
VT. (4.8) 
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A + 6AQ = 

(       T     \ r 

A + SÄ 
U 

I    T \ z 

C 

\ ° / 

(4.9) 

Thus ^8 A || = ||£.i4|| < \\8A\\ and the same result holds for the Frobenius norm. 

Proof. We have that 

ÜJ 
<c^ 

\° J 
diaS(^Vn-p) = 

/ T       \ 
x + Sx (p — Sp)e 0 

L^ he\ 0 

jm     G(3) o 

0 0 0 

We also have that 

I -T\ 

\C   ) 
^^'^•W^^'Vt-i) 

T      T\ 
X p6l ^0 

L(2) he 0 

F(2) G(3) 0 

0 0 0 
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Let V = V diag(J , V   I      ) then from the definition of V in Algorithm 4.1 it follows 

that 

/ 

[/ 

/    T \ z 

C 

\ ° / 
V* = u 

T      T \ 
x peY yQ 

L& Ke\ 0 

F(2) G(3) 0 

0          0 0 

äiag(Ik,vT,In_p)VT. (4.10) 

However, we have 

U 
'c^ 

\° I 
V±    =   U 

( T       \ x + 6x   (p — 6p)e      0 

L& ~he\ 0 

F(2) 

0 

G (3) 0 

0 

^/^„y (4-n) 

=   A + 6A = 
r   + or 

Ä + 6Ä 
(4.12) 

Comparing equations (4.10) and (4.11), using the fact that 

Vdiag^V»-,) 

/ \ 
x 

Pei 

V   h   J 

= r 

and the assumption that Ue   = e , we have (4.9).   D 

Therefore, we have shown that the additive noise in Step 4 and the act of ignoring 

y   actually make the matrix C closer to being orthogonally equivalent to Ä than C is to 
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A. In Section 4.3, we show that the results of Propositions 4.1 and 4.2 make Algorithm 

4.1 a robust algorithm for tracking the ULVD. 

4.2.2    Relation to Park and Elden's URV Procedure 

A recent report by Park and Eiden [87] gives a method for downdating the URVD. 

For that algorithm, we are downdating an upper triangular matrix M of the form (1.4). 

The procedure is as follows. 

1. Find an orthogonal matrix Ü   and an upper triangular matrix R such that 

X 

\ R ) 

= U. 
0 

R 
(4.13) 

Determine S and y such that 

T\ 

= Ü, 
y 

(4.14) 

2. Find an orthogonal matrix U   and an upper triangular matrix T such that 

( ~T\ 
y 

\f i 
= D„ 

'^ 

\T/ 

(4.15) 

The downdated matrix M is 

M = 
I R   5^ 

0    T 
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as before. 

Park and Eiden [87] recommend the use of hyperbolic rotations in (4.14). That 
rp   rp 

can be avoided by a simple and well-known trick. Let (a   a   )    be the first column of 

Ü   as determined in (4.13). Then we note that 

/        \ 

y = (y s ) 
a* 

^ßl / 

which implies that 

-1/       CT    , 

Once y is determined, we obtain S from 

y 

\s i 
= v. y 

T T 
HT  T -yy    is indefinite, Park and Eiden substitute for (4.15) the operation 

u: 
(   \ 

0 
V = 

(   T\ 
pen 

\T) {   f   ) 

where V is an orthogonal matrix such that V"  y = pe   and so that T is triangular. They 

then compute 

(   T\ 
' y 

\s i 
= u: v. 

\s i 
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-T — 
where j/ = V   y. The downdated matrix T = T except for t   , q = n- k. That entry 

satisfies 

t     = < 
9? 

 ifiy<H 
-2 2 /     — p      otherwise . 
9? 

The first condition is identical to the case where T  T — yy    is indefinite. 

REMARK 4.3. Algorithm 4.1 is related to the above algorithm although the essential 

steps of them were developed independently. Steps 1 and 2 of Algorithm 4.1 reduce the 

ULVD downdating problem to that of downdating the (A; + l)x(A; + l) upper triangular 

matrix 

it 1 

(L®    h \ > 

\ 
0      9 (2) 

11 

(4.16) 

The Park-Eiden algorithm applied to this matrix would perform Steps 3 and 4 of Algo- 

rithm 4.1 except that it would perform Step 4 according to 

"I 
I ~\ 

\h 1 

(     \ 

\h ) 

(4.17) 

instead of according to (4.6). The consistency property in Proposition 4.2 does not hold 

if we use (4.17). That can be seen when (4.17) is placed into the proof. Equation (4.10) 

does not change, but we do have 

vi ( g{2) 
\ 

P - [<5p]a 
\ 

h    J       \h~ l6P\a j 

(4.18) 
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P) - ."I where Sp = p - gK ' = a     6p using terminology from Algorithm 4.1. We note that the '11 

additive noise is multiplied by a factor of a      > 1, but that is not crucial.   Equation 

(4.18) implies that equation (4.11) in the proof of Proposition 4.2 is replaced by 

U 
<o^ 

\c I 

T      ~ 
V1 = U 

I T       \ 
x + Sx   (p — [Sp\a)e      0 

X(2)     (h-[Sp\a)e^   0 

F(2) 

0 

G (3) 0 

0 

di.g(ik,v?,in_p)v
T. 

Thus the consistency property of Proposition 4.2 does not hold. 

The Park-Eiden URVD algorithm requires 5k2+5(n-kf+8k(n-k) + 0(n) flops. 

This algorithm is fewer flops than is required to downdate the ULVD by Algorithm 4.1, 

but there is an important advantage to maintaining the ULVD instead of the URVD. 

Both the URVD and the ULVD will tend to produce a V matrix such that 

v = (Vj v2),   v e nnxk, v2 e ^"x(n"^ 

where range(V ) and range(V ) are approximations to the subspaces associated with the 

first k and last n — k singular values of A respectively. However, as found by Fierro and 

Hansen [43], if F in (4.2) and S in (1.4) satisfy ||F|| « ||5|| and if 

inf    \\Rx\\ > e >  max   \\Gy\\, 
1*11=1 l|y||=i 

then the ULVD yields a more accurate approximation of the desired subspaces of A. 
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4.3    Error Analysis 

4.3.1    Error Bounds on Algorithm 4.1 

(2) 
We begin by showing that if p < gK ' in Step 4 and y   = 0, then Algorithm 4.1 

produces a matrix C such that 

VTCTCV -(z + Sz)(z + Szf = (C + SC)T(C + SC) (4.19) 

for some orthogonal matrix V. This is the so-called mixed stability criterion defined in 

(2) 
Definition 2.7. If in Algorithm 4.1, y   ^ 0 or p > g^ ', then we are, in fact, producing 11 

C such that 

VTCTCV - (z + Sz + 6z )(b + 6z + Szf = (C + SC)T(C + 6C) 

for some orthogonal matrix V. In the context of Algorithm 4.1 , 

^-diagCV^Hiag^Vn-P 
[Sp)e 

Jfc+1 

"0        / 

(4.20) 

(2)       T where 6p = p — (ag). ' + a   h). Note that 

ll^ll2 = |M2 + ligi2 = \P - («fffi} + flT/*)l2 + Kil2- 

We note that V = I , if Step 6 is not done. The effect of Sz is discussed in Appendix 

B of [13]. It is essentially the same as the effect of Sb as bounded in Proposition 4.3. 

The analysis in this section will ignore that effect, it will assume that we are analyzing 

the problem (4.19). 
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We define the scaling matrix 

-1, A = diag(J,,||G||||I   1/     ,) -k> (4.21) 

We expect the rounding errors from Algorithm 4.1 to be columnwise proportional to 

diagonals of A. 

THEOREM 4.1. Let Algorithm J,.l be performed on a matrix C of the form (4.2) in 

floating point arithmetic with machine unit \i. Then there exist orthogonal matrices 

Ü G nin+1)*{n+l) ,V G KnXn such that 

Z+6z      I _T 

I = u 

C + SC 

'o^ 

\c/ 

where 

Sz = HA-^zll,    ^ = ||^CA-1|| 

sz,sc<(ß(p)\\c\\pi + o(fJ
2) 

where A is defined in U-21) and 4>{p) is a modestly sized function of p. 

Theorem 4.1 is proven in Appendix A of [13]. This theorem is somewhat similar to error 

bounds on orthogonal factorization of matrices with disproportionate rows [8, 12]. 

The following corollary gives the error bounds that we get if we use no structure 

of the problem (4.2) or the resulting matrix (4.4). 

COROLLARY 4.1. 

'«^ 

\6C I 
< *„(p) ||C|| M + O(M^) (4.22) 
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where ^„(p) is a modestly growing function of p. 

In the next section, we discuss the effect of these rounding errors on the singular 

vectors of the matrix C. 

4.3.2    Effect of Rounding Errors on Singular Vectors 

A common reason for computing the ULVD is to separate subspaces associated 

with large and small singular values. For the ULVD, after downdating , there will be / 

large singular values where I = k OT I = k - 1. If W = (W W_), W £ 1Zn , W € 

TZ v Ms the matrix of right singular vectors of C, then the computed range(W ) 

and range(VT ) should be as close as possible to the expected ranges. In this section, 

we show how reliable we can expect these subspaces to be. Our bounds are somewhat 

better if / = k, that is, if the downdate does not alter the rank. 

We need to measure the effect of both 8 and 8 on the invariant subspaces 

associated with the / largest singular vectors and the n — I smallest ones. We define C 

and C as matrices such that 

ClC = VJ C1 CV - zz (4.23) 

CTC = VTCTCV - (z + 8z)(z + 8z)T. (4.24) 

Defining C as in (4.19) implies that 

C = C + 8C. (4.25) 

It is also necessary to define u by 

u = max{l, ||[£(2)rTx||, \ß~Tx\\}- (4-26) 
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Note that the definition of u involves only the L block and is related to the condition 

number given by Pan [86]. 

First, we need the following three technical lemmata. 

LEMMA 4.1.  The vector h and scalar p from Algorithm 4-1 satisfy 

I     \ 
P 

< \\G\\. (4.27) 

Proof. We note that 

/      \ 
P 

< 'm  °)t)T 
G 

V. < INI, 

which completes the proof.   D 

LEMMA 4.2. Let z be as in (4-V resulting from Algorithm 4.1. Then 

11*11 <II<Z||(1 + «). 

Proof. From Algorithm 4.1 and (4.20) we have that 

z = 

/       \ 
X 

\yo/ 

diag(/i, if, /      ) diag(if, J^) diag(/fc, if, J^) 

I       \ 
x 

\y0 ) 
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By the orthogonality of V we have 

= \P\, 

where 

x 

V / 
KJ 

/    \ 

\p I 

Now consider the least squares problem: 

mm 
ae1lk 

( [L{2)]T " 
a — 

\m\ rT 
\     H        ) \p) 

Since 

TT\ 

-^ 
( [L(2)]T ) 

hT 

we have 

\P\ =  min 
( [L{2)f ) H 
\     h       ) 

a — 

{") 
^ (2) — T 

Let 2 = [Xv ']     a;. Then from Lemma 4.1 

\P\    < 
( [L{2)]T ^ 

a — 

(     \ 
X 

I? 
\     h        I \p) 

= \h   a — p\ 

<    H + |ftra|<||G|| + ||G||||[i^r^ll 

<    l|G||(l + a;), 
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which completes the proof.   D 

It is necessary to bound the effect of A and z on the singular vectors of C. 

LEMMA 4.3. Letw., i= 1,2,...,n, be the right singular vectors of C. Let A be defined 

by (4-21), let z be as in Lemma 4-2, and let u be given by (4-26). Then 

\&w.\\<\\r\\JoU\\Gf<\\rl\\{o-. + \\G\\), i = i,2,...,P 

\z1w.\<u(a. + 2\\G\\),    t=l,2,...,p. 

Proof. We note that for i = 1,2,..., p, 

w. 

w: ' 
i 

(2) w: 
t 

\ I 

k 

p—k 

n—p 

lt.\s obvious from the form of C, that the last n — p components of all its nonzero singular 

vectors will be zero. It should also be noted that w. = e.,i = p+1,...,n form a singular 

subspace for the last n — p zero singular values. For i = 1,2,..., p, we have that 

llA^ii^ii^^i^ + iiqi2!!!-1!!2!!^!!2. 

Taking square roots establishes the first bound on ||Au;.||. Continuing we have 

\AW.\\2 = \\rliwM\\2 + \\G\\2\\L-l\\2 

<   ||X-1||2(||XJ1)||2 + I|G'||2) 
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<    llX^llV.+IIG'll2) 

< wrYia. + wGwf. 

Taking square roots again establishes the second bound on ||Aiu.| 

Now 

\zTw.\    < \xTw^\ + \yTwf\ 

< \xTrllwf\ + \\y\\ 

< \\L-Tx\\ a. + \\y\\ 

< W(a.+ ||G||) + ||G|| 

< u(a. + 2\\G\\), 

which completes the proof.   D 

Now we give a perturbation bound on the effects of the backward errors \\Sz\\ and 

||*7||. 

LEMMA 4.4. Assume the terminology of Lemma 4-3.  Let w., w., w., i = l,2,...,n be 

the right singular vectors of C, C, and C in (449), (4-23), and (4-24) respectively. Let 

ö   > •• • > a    be the singular values of C, and let a^> ■ • ■> a   be the singular values 
1 -       -    n " J     ' 1 —       ~    n 

of C. Ifa.ya. and a. > a. we have 
J i        J i        3 

1     J [(Ti-a3       *]-*)) 
+ 0(\\6z\\2) (4.28) 

\w
Tyj.\<^L + 0(\\6C\\2). (4.29) 
»    3       a. — a. 

*       3 
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Proof. Equation (4.29) is just a standard error bound based upon the perturbation 

-T - 
of the eigenvectors of C  C. From the Kato [69] expansion for eigenvectors we obtain 

\w. w. 1 i   r 

wT(z(6zf + {Sz)zT + (6z)(6zf)w. 
1   3 

~2      ~2 
a. — a. 

\\6z\\(\zTw\ + \zTw\) 

*     12-45 '-+ 0(\\Sz\\\ 
a. — a. 

»       J 

+ Ö(|N|2) 

From Lemma 4.3 we have 

-T~ 
cr. + cr. + 4 ||G|| 

1^; ö,| < « 11**11      _/   „2— + 0(11**11*). 
i     3 a. — a. 

An algebraic simplification leads to (4.28).  D 

Simply using the definition of the || • ||„ norm leads to the following proposition. 

It tells us how good our subspaces will be if we only have a bound of the form (4.22). 

PROPOSITION 4.3. Assume the terminology of Lemma 4.3. Let W = (W    W ), W  e 

V,      ,  W   £ 1Z     ^      '  be the matrix of right singular vectors of C and let W = 

(W     W ) be the corresponding matrix of right singular vectors of C.   If a. > a. 

then 

\\W?W2\\F < y/l(n-l) 
u \\8z\\ + \\SC\\  ,  4u||(7||||«z|| 

°l ~ CT/+1 
+ 2        2 

Cl ~ al+l 

( 

+ o 
(SA 

2\ 

\ 
[scj 

/ 

Proposition 4.3 applies even if the downdate changes the rank.   The condition 

number u in (4.26) depends solely upon the X-block, the matrix C does not have to be 
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well-conditioned or even full rank for the downdating problem to be well-conditioned as 

is required in previous analyses [86, 87]. If there is no rank change, that is if / = k, we 

can get an even better bound as shown below. 

We define e and E according to 

e = A   16z/6z,    E = SCA   lßc, (4.30) 

where 6   and <$_, are the bounds from Theorem 4.1. Note that ||e|| = \\E\\ = 1. First, a 

technical lemma characterizes the vector z that is downdated. 

LEMMA 4.5. Assume the results and terminology from TheoremJ^.l. Letw.,i= l,2,...,ra 

be the right singular vectors of C and let w. , i = 1,2,..., n be the right singular vectors 

of C. Let a   > a   > ... > a   be the singular values of C. Then for all i and j such that 

a .± o, we have 

J       a. — a. J 3 

Proof. From Kato[69], we have that 

w.A(ze   +ez  )Aw. 
w.w. = S -^ ^ 5  + 0(6Z) 

t    j        z ~2_~2 

where e is defined in (4.30). Taking norms we obtain (4.31).   D 

LEMMA 4.6. Assume the results and terminology from Theorem 4-1- Let w., i = 1,2,.. .,n 

be the right singular vectors of C and let w. , i = 1,2,..., n be the right singular vectors 
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of C = C + 6C as in (4-25). Let a   > a2> ... > a    be the singular values of C.  Then 

for all i and j such that a. > o. we have 
*       3 

^III-W + HGH) 
\w. w.\<2 — *  

*    3 a.- a. 
i       j 

+ °(K (4.32) 

Proof. Again using the Kato [69] expansion 

wT(C SC + CTSC)w. 
wi ™j = ~ 2 2 " + °(C)- 

Using the definition of E in (4.30) we have 

wTAECw.+wTCTEAw. 
wi ™j = 6c~ k-h l + °('c)- 

*        3 

Using norm inequalities we have 

T ~ 
\w. w.\ < 6~, 1   %    3 C 

llAto.H \\E\\ \\Cw\\ + HCii; || ||£|| ||Ato || 

2        2 
a. — a. 

i        3 

+ o(s- c (4.33) 

Using Lemma 4.3 and the fact that ||CIü.|| = a. yield 

= -li 

\w. w.\ < 6~- 
'   i    3' ~   C 

(a. + \\G\\) a.+ ^. + 11011)0-. 

2        2 
a. — a. 

»        J 

+ 0(6Z
C) 

Reorganizing leads to (4.32).   D 
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Now we can bound the quantities in our lemma on the singular vectors.  These 

bounds actually apply to the singular vectors of C, but we will ignore second order effects 

and use these bounds for the singular vectors of C. 

Now we need a bound on the errors in the singular vectors of C from 6 .   To 
z 

within rounding error, the same bounds as in Lemma 4.3 will hold for w., i = 1,2,...,n. 

That is, \\zTw.\\ < u {a. + 2 ||G||) and ||A«.|| < fL^W (a. + \\G\\). 

LEMMA 4.7. Assume the terminology of Lemma 4-3 and the results and terminology of 

Theorem JL.l. Assume that a. > a.. Then 
*       J 

-T~ S u \\L -1, 

Iw.w.l <2-2- 
j    * a. - &.     L J 3F. +1.5 11^11 + 2 11011^+ *.) + £>(*;). 

Proof. Combining Lemmata 4.3 and 4.5 yields 

rp S    W    \\L 
w . w.\    <    —  

3    I 

-1, 

_2     ~2 
a. — a. 

i       j 

(ä. + 2||G||)(<7. + ||G||) 

+ (äi + 2||G||)(cF. + ||G||) 

* «||£_1||  

-i- °«) 

= 2 z 2"   2 "<g,-gj + L5 WG^i + 5,-) +2 HGlft + °(fy a. -o. J J 

»        3 

<    2 -4r — 
a. — a. 

1       j 

ä. + 1.5||G|| + 2||G|r/(ä. + ä.) + o(*;), 

which completes the proof.   D 

The proof of the following theorem is obvious from Lemma 4.7. 
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THEOREM 4.2. Assume the hypothesis and terminology of Lemma 4-7. Let W be the 

matrix of singular vectors of C and let W be the matrix of singular vectors of C. If 

w = (w1 w2),   w = (w1 w2), 

where W   W  e Tlnxk, and WyW2e nnx{-n~k^ then 

K"\\L~1\\ 
\W\W2^F    ^   2 >/*(""*) 1 2UF ~   v        h~dk+i 

54+1 + 1.5||G|| + 2||(?||2/(aFjb + 5jb+1)]+0(^) 

Analogously, we can bound the effect of 6^. 

THEOREM 4.3. Assume the hypothesis and terminology of Lemma J^.6. Let W be the 

matrix of singular vectors of C = C + SC and let W be the matrix of singular vectors of 

C. If 

w = (w1 w2),   w = (wl w2), 

where W ,W  e TZnxk, and W ,W  G ftnx("~^ then 

T~ , UI^W     +||G||) 2s 
\\W[Wj\F < 2 Jk(n - k) -£ j—te + 0(62

c). 
k        k+1 

The effect of 6^ is, in fact, somewhat less critical than that of 6   as has been 

stated in other analyses of this problem [86, 87, 99]. We note that the error bounds in 
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Theorems 4.2 and 4.3 are relative gap bounds on the error in the subspaces similar to 

those in [11, 36]. 

If ||X     || ||G|| < 1, these bounds are a significant improvement over those in 

Proposition 4.3. This is one of the reasons for maintaining the property (4.4). 

4.4    Numerical Examples 

In this section, we present a few examples from numerical experiments.   These 

tests were performed using MATLAB on a SPARCstation 5 in IEEE Standard double 

— 1 fi 
precision with machine precision « 10      . The algorithm employed the sliding window 

technique described in Section 2.7.3. 

At each step of the sliding window method with the window size m , an m   x n 

data matrix is constructed from an m x n observation matrix A by adding a new row to 

the data matrix in the previous window and deleting the oldest row from it. In step j, 

the row m   + j of the observation matrix is added and the row j is deleted, giving the 

data matrix A.. 
3 

Computing the ULVD of initial data matrix is described in Section 2.5.2. Then 

Algorithm 4.1 takes the lower triangular matrix (middle part of the decomposition), 

the orthogonal matrix (right part) as initial input and the modifying vector r, and 

T successively modifies these matrices at every window step.   The vector z = V   r is 

computed at the beginning of each window step. 

We tested our algorithms in the context of the total least squares (TLS) problems. 

See Section 2.7 for details. We used the TLS solutions from the Jacobi SVD as reference 

in checking the accuracy of the solution and rank estimates of our algorithms. 
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Fig. 4.3-4.5 show the rank estimates by our algorithm, which are identical with 

those of the Jacobi SVD algorithm. The horizontal axis represents the window steps and 

the vertical axis the numerical rank of the window matrix. 

The distance between the subspaces is given in the next plot using the Definition 

2.3. Let 

A. = Y.Z.WT,    W. = (W..   W..) 
3        3   3    3 3 Jl       J2y 

be the SVD of A. computed by the one-sided Jacobi method at step j. Let 

A. = U.C.VT,    V. = {V..   V   ) 
3 3   3   3 3 Jl      3^ 

be the ULVD of A. computed by Algorithm 4.1. Note that here we are discarding U.. 

Finally, let 

C. = Y.1:.W
T

,   w. = (w„ w.j 
3        3   3    3 3 Jl       3% 

by the SVD of C. computed by the one-sided Jacobi method. Define W. by 

W. = (W.,   W.n) = V.W.. 
3 jl       3* 3    3 

Define the angles between the subspaces 

sin 61 = ||W£V.2||,    sin(ö2) = ||W^V.2||,    sin(03) = ||w£w\2||. (4.34) 

The angles 6., i = 1,2,3 represent, respectively, error between the true noise sub- 

space from the Jacobi SVD and the approximate one from tracking the ULVD, the 

approximation error from the ULVD, and the subspace errors from ULVD subspace 
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tracking. The value sin(0 ) is one that is bounded by our error analysis. We plot- 

ted log (s'm(6.)),i = 1,2 in solid and dotted lines, respectively, in the vertical axis of 

the second graph. It turned out that log (sin(0 )) was almost indistinguishable from 

log (sin(0 )), so we did not plot it. sin(0 ) is the approximation error discussed by 

Fierro and Hansen [43]. 

Finally, the TLS errors 

(SVD)_x(ULVD)| 

*~        ||*(SVD)| M j      i 

are given in logarithm in the last plot. Here, x\       ' and x\ ', are the TLS solutions 

using the SVD and the ULVD, respectively. 

For our condition estimators, we use the LINPACK condition estimator to approx- 

imate the left singular vector that corresponds to the smallest singular value, followed by 

inverse iteration using this approximate singular vector as the initial vector. The tests 

show that up to three steps of inverse iterations suffice the accuracy of the approximate 

smallest singular value required by the algorithm. 

EXAMPLE 4.1. A, a 110-by-6 random matrix, b, a 110-by-l random vector. Entries of A 

and b were chosen from a uniform distribution on the interval (0,1). 85 randomly chosen 

rows of (A; b) were multiplied by 7 = 10      in order to vary the rank of the matrix, and 

_2 
tol = 10     . The window size p used was 12. 

EXAMPLE 4.2. Same as Example 4.1 except that 7 = 10      and tol = 10 

4 
EXAMPLE 4.3. Same as Example 4.1 except that the matrix had an outlier of size 10 

at (18,1) position. 
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The first plot shows that our algorithm estimated the numerical ranks correctly 

throughout the sliding window steps in spite of frequent rank changes. Although the 

errors in tiny singular values were relatively large, and the small singular values were 

almost always overestimated, they were close enough to correctly estimate the rank. Thus 

the rank estimates from our algorithm and those by the Jacobi SVD were identical. As 

expected, the errors in the TLS solution r. are almost exactly the same as the size of 

sin(0 )in (4.34). 

The second plot in each figure shows that the noise subspace error is very small 

giving accurate TLS solutions. The quantities in (4.34) are shown to be essentially 

identical indicating that the subspace errors from our algorithm are from the rounding 

errors, not approximation errors. We note that the Example 4.1 has greater error in the 

noise subspace than Example 4.2. 

This is probably because Example 4.1 has only a small relative gap in the spectrum 

—5 —8 
around 7 = 10      but a large relative gap around 7 = 10     .   However, for all of our 

examples, the approximation to the subspaces by the ULVD is very good. Since the error 

bounds on the distance between the noise subspaces depend on the (k + l)-st singular 

value, the approximated singular subspace gets better as 7 decreases as shown in Fig. 

4.3-4.4. 

The TLS solution errors behave very much the same as the noise subspace errors. 

From (2.18)-(2.19) it is not difficult to see that the TLS errors differ from the noise 

subspace errors only by a constant factor. 

Moreover, the algorithm performs well even when G becomes singular (indicated 

by '*' in the first plot). We tested several other examples, and these results were typical. 

Since our downdating procedures use the LINPACK downdating algorithm, it is 

not difficult to generate the cases where the algorithm breaks down when ||a|| > 1, for 

instance, when deleting a row that contains outliers.   In this case, we first refine the 
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decomposition [100, 104], that is, compute an orthogonal matrix U such that 

U 
'i ^ 

F   G 

'i ^ 
0    G 

(4.35) 

If it is still true that ||a|| > 1 even after the refinement, where L a = x, the 

corrected semi-normal equation (CSNE) approach [18] (indicated by '+' in the first 

plot) is used for computing a with higher accuracy. It is essentially the same as that 

used by Park and Eiden [87] and is given by 

Ly = a,    t = el- X.V^ 

L  6a = V, X. t,    a — a + 6a 
1     3 

L6y = 6a,    t = t-X V 6y,    a = ||i|| 

T      (       T\ where X.  = Ir  A. 1, the j-th window matrix augmented with the row being deleted. 

Finally, restore the lower triangular form, that is, compute an orthogonal V such that 

<i ^ 

F   G 

tl i,\ 
0    G 

V. (4.36) 

The CSNE approach was used in all three examples and most extensively in 

Example 4.3 when downdating a row with an outlier. However, the performance of 

our algorithm was less satisfactory for larger outliers. This is consistent with our error 

analysis, since for a very large outlier we would have u in (4.26) very large. 

2 
The refinement steps in (4.35)-(4.36) require k (n - k) Givens rotations, so that 

they become impractical when k = ö(n^) or larger. As an alternative, we solve for a 
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by solving 

LTFT a — z 
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(4.37) 

mm 
*N 

L   a    = z 
B       m 

1 -L~TFT ^ 
aN + 

(        \ 
a „ 

B 

\   °   / 

(4.38) 

(4.39) 

Then, we see that 

a = 
/ T-TJ?T       \ aB-L     F  aN 

\ "N I 

(4.40) 

is the minimum length solution to (4.37). (4.38) requires 0(k ) back substitution, 

and (4.39) can be approximated by a few steps of Lanczos algorithm since it is well- 

conditioned. 

Table 4.1.   Tracking ||P||    and ||G|L for the ULVD Procedure 
F F 

Steps Updating Formula Flops 

2 II^IIJ.=II^HJ. - ii/;i}n2 0{k) 

0(1) 

5 \\F(% = \\F(YF + \\gf)\\2-\\9(*Y 
iic(4)ii2F = iiG(3)ii2F-ibi3)n2+iiff;

4)ii2 

0(p - k) 

0(1) 
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Moreover, to prevent a from becoming too large, we track ||F|| „ so that it remains 

under certain threshold, say, \\L     \\ \\F\\    < 0.01. This is similar to recommendations 

made by Fierro and Bunch [41, 42]. Only steps in Algorithm 4.1 that require to update 

\\F\\p are Steps 2 and 5.  Table 4.1 shows how to update these quantities.   Here, g^1' 

(i) denotes the first column of GK   ,i= 1,3,4. 
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Chapter 5 

Rank Detection for Modifying the ULV Decomposition 

5.1    Introduction 

In Algorithm 4.1 the deflation steps are required to compute the numerical rank 

after a downdate. The deflation step usually involves some condition estimator, which 

can be a nuisance in some situations such as in parallel implementation.  A survey of 

2 
popular condition estimators is given in [61], and they all require ö(k ) flops, so that 

2 the entire process requires ö(k ) flops, where k is the dimension of L in (4.2).  With 

some modification to Algorithm 4.1 we can often eliminate Step 7, the deflation step. 

Furthermore, the modified algorithm offers an efficient way of tracking exact quan- 

tities of \\L || „, \\F\\ „, and ||G|| „, which give a significant information on the condition 

of the downdating problem. The experiments show that the computed subspaces are as 

good as can be expected, and no worse than those demonstrated in the previous chapter. 

The updating algorithm for the ULVD can be also implemented similarly with a slight 

modification to the downdating algorithm. 

We propose our new ULVD updating/downdating algorithm in Section 5.2. Sec- 

tion 5.3 contains the rank detection method related to the new algorithm. In Section 

5.4, we give numerical tests of our algorithm on the RTLS problems. 
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5.2    New Algorithm for ULVD Downdating 

Our new algorithm reduces the downdating problem to a 2 x 2 downdating prob- 

T T lern. As in Algorithm 4.1, we assume that L  L — xx    is positive definite, and U is not 

accumulated. 

ALGORITHM 5.1 (NEW PROCEDURE FOR ULVD DOWNDATING). Assume the terminol- 

ogy of Algorithm 4.1, and denote also that r*£ = e^ [lA ']e^. 

Step 1. Construct orthogonal matrices Ü , V^ G U *   and Ü^V^ G V}p~ 'X^p~ ' 

such that 

L{1) = üfLVv    V^x = (ek,    {=\\x\ 

G(1) = Ü^GVr    Vfy = pev    p = \\y\\ 

(5.1) 

(5.2) 

Also, compute 

f(1) = Ü^FVV 

Update V - Üdiag(Ü1,/n_jb) diag^,^,^     ). 

Step 2. Find an orthogonal matrix U  G TZK      ' such that 

(i<2>   h \ -T /   i*
1)      0   ^ 

I  (f(1))T   c(1)  I V u\   '     9n I 

(5.3) 

Define F{2) = (I- e^F^. 
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Step 3. Write 

I^ = 

k-1 1 

/ xf) o ^ 
r   (2)iT ,(2) 
&     } lkk 

k-1 

1 

kxk and find an orthogonal matrix U   £lZ       such that 

(3) 

\ °       fkl 
oTiP\ 4 (5.4) 

(I)      -T Compute also hr ' — U  h. 

Step 4. Use Algorithm 3.9 for 2 x 2 downdating: 

e«i=^»2<,4'>,ev2> 

where we solve 

0    g (2) 
\    v      yll   / V^/ 

(5.5) 

and set 

ßx=ßv    ß2 = mm{ß2,Jl-ßl} (5.6) 

kxk Step 5. Find an orthogonal matrix V G 72.        such that 

L^ = 
I       r(5) 

/   (5)XT    ,(5) 
= L<%. 

ikik   / 

(5.7) 



where L^ ' and L,   ' differ only on the (k, k) entry. Also, compute 

^(3) - FV)v 

Update V<-Vdiag(V3,In_k). 

(k+l)x(k+l) 
Step 6. Find an orthogonal matrix V' £ TV-      '   v      ; such that 

84 

(£<6>   0) = (I<5>   hP^)?4 

(F(4)   G(4)) = (i,(3)   G(3))diag(y4,/^_i). 

(5.8) 

(5.9) 

Update V <- V diag(F4,/ri_ifc_1). If ^ ^ 0, then 

C = 

L 0    0 (z<6> 0 0 

F G   0 = F(4) G(4) 0 

0 0    0 0 0 0 

and skip Step 7. 

,(4) f(4)_ (3) Step 7. If g Y = 0 then /j ; = 0 also since it was formed from gK ' using V . Thus 

'l    o ^ 

p—k 

0 

F(4)    G(4) 
0        0 

;(4) F   Gv 

/ 

l 

p-k-l 
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~(4) 
where Gu is a lower Hessenberg matrix.   We then find an orthogonal matrix 

V. € n(p~^X(p~k^ and an orthogonal permutation matrix Ü, G ft^-^*^-^ 
o 5 

such that 

0y\= 
/ - 

G   0 

0    0 

p-k-1 

1 

Update V «- Vdiag(J,,V.,I      )• Thus, 
K      O     ft—p 

k     p-k-1     n-p+1 

C = 

L 0 0 k 

F G 0 p-k-1 

0 0 0     , n-p+1 

Step 8. Update the numerical rank of L, and make appropriate adjustments to F 

and G (a procedure for the rank detection will be described in the next section). 

2 2 Algorithm 5.1 requires 12k   + 6(p - k)   + 24k(p — k) + 0(p) flops for Steps 1-6 and 

2 
4k   + O(k) flops for Step 7. When V is modified, additional 6np + \2nk flops will be 

required.   Fig.  5.1-5.2 depict the reduction steps for Algorithm 5.1.  As in Algorithm 

4.1, a set of —► denotes the downdating Step 4, and Step 7 is illustrated in Fig. 4.2. 

REMARK 5.1. Note that in (5.5)-(5.6) we incorporate "additive noise" to compute a as 

similarly done in Step 4 of Algorithm 4.1. As shown in Chapter 4, the algorithm can be 

made consistent with this additive noise in the absence of rounding error. Proposition 

4.2 shows this important consistency property. 

REMARK 5.2. Algorithm 5.1 has a few advantages over Algorithm 4.1. Algorithm 5.1 

does not incorporate the deflation process to estimate the numerical rank as often as 
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Algorithm 4.1. It turns out that after a downdate, Z,,, the (k,k) entry of X often gives 

a very good approximation to a . (X). Steps 3 and 5 offer this benefit with some extra 

work, namely, 2 (k — 1) Givens rotations. 

REMARK 5.3. The algorithm can be also used for updating the ULVD just by replacing 

Step 4 with the Algorithm 3.8, which requires only 12 flops. 

5.3    Rank Detection 

5.3.1    Bounding ||X_1|| 

In this section, we show that in Step 8 we can often determine the numerical rank 

of A without the deflation process. We start with stating a simple lemma that bounds 

the 2-norm of a block matrix in terms of 2-norms of its blocks. 

LEMMA 5.1 ([9, LEMMA 3.3]). Let M and M be the sx s block matrices, 

M = 

Mu    Mu    ...   Mu 

\Msl    Ms2    •••    MssJ 

,    M = 

\\Mn\\   \\MU\\    ...   \\MU\\ 

VUMJ    WMs2\ \\M 
ss" I 

Then \\M\\ < \\M\\. 

Proof. See the proof in [9].   D 

In fact, Lemma 5.1 holds for any consistent norms. A straightforward application of this 

lemma results in the following lemma. 



LEMMA 5.2. Let 
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L = 

v       1 

Lu    w 

0      7 
(5.10) 

where L     is nonsingular and 7^0. Then, 

l|£_1||< 
' \\L-*\\   7-1||i-^||N 

-1 
V 

(5.11) 

Proof. It is easy to verify that 

X"! = 

I    ° 

-1,-1    \ -7     in tir 

-1 
(5.12) 

Then taking norms and using Lemma 5.1 yield (5.11).  D 

(i) 
The following lemma shows the effect of Steps 3 and 5 of Algorithm 5.1 on r,', 

(k,k) entry of X^,i = 2,4. 

LEMMA 5.3. Let L be defined in (5.10). Suppose 

L = 
w     7 

= LQ (5.13) 

where Q is orthogonal. Then, 

~-l        -1,.  , MI--1   ,,2,1/2 
7      =7     (1 + ||X,n w|| )      . (5.14) 



Proof. From (5.13) we see that 

90 

r1 ?-i 
'11 0 

_-l_Tr-l    —1 
-7     w   Ln     7 

g^-1 

i.   . where the expression for L      is given in (5.12). Thus we have 

~—T~—1 —T   —1 

Comparing both sides yields (5.14).  D 

Combining Lemma 5.2 and 5.3 gives the following result. 

LEMMA 5.4. Assume the hypothesis of Lemma 5.3. Then 

iL-'w^^wL-^ir1,!-1), (5.15) 

where 

ip(x,y,z) 
1,2,    2,  ,   1   I.  2  .    2,2     ~T1 
-{x  +y )+-\/(x  +y )  -4x z (5.16) 

Proof. It is easy to show that for any 2x2 upper triangular matrix, 

5 = 
'   a   b  » 

\°   C/ 
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we have 

°\{S) = i(a2 + b2 + c2) + ly/(a
2 + b2 + c2)2-4a2c2. (5.17) 

— 1 —1      —1 —1 2       2 Let a = ||i     ||, b = -7     ||2/    tu||, c = 7     . Then by Lemma 5.3, we see that b +c   = 

—2 —1 7     , and by Lemma 5.2, ||X     || < cr (5). Hence, taking a square root in (5.17) proves 

the lemma.   D 

The following lemma states necessary conditions to ensure a correct rank estima- 

tion for the ULVD. 

LEMMA 5.5. Let C be defined in (4-2), and let 77 = ||.FZ     ||. Suppose 

\L   1\\<tol   X,    \\G\\(l + T))<tol,    77 <1. (5.18) 

Then, 

ck{C) > tol > <rk+1(C). (5.19) 

Proof.   By singular value interlacing property [63, Theorem 7.3.9], it is easy to 

show that 

ffkW * ffmin^ = II1"1«"1'    WC) * CTl(G) = INI' (5-2°) 

Thus, 

ak(C) > tol > taJ. _L_ > \\G\\ > *k+1(C). 

This proves the lemma.   D 

Thus, the decomposition always remains rank-revealing as long as the conditions 

in (5.18) are satisfied.  Note that these conditions are not enforceable unless there is a 
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reasonable gap in the spectrum, but the conditions for its existence are weaker than the 

RRQR conditions of Hong and Pan [62]. 

A cluster of singular values around tol would cause one of the conditions in (5.18) 

to be violated, and the rank to be underestimated. Since we keep tracking \\F\\ and 

\\G\\„ automatically as a part of the algorithm as illustrated in Section 5.3.3, we will 

always know when this happens. 

The quantities in the above lemma cannot be tracked efficiently using our algo- 

rithm. However, some good bounds can be tracked. That leads to the following theorem 

that uses only computed quantities. 

THEOREM 5.1. Consider the downdating procedure in Algorithm 5.1 and the related up- 

dating procedure given by Remark 3.5. Let C be the matrix before updating (downdating) 

and partitioned as in (4-2), and let L have the condition estimate K « \\L \\ such 

that 

ak{C) >K>tol> o-k+1(C). 

Let C be the matrix after updating (downdating) and partitioned according to 

s      p—s     n—p 

C = 

L 0 0 s 

F G 0 P-s   , 

0 0 0   ; 
n—p 

(5.21) 

where s = k + 1 for updating and s = k for downdating. Define 

R-l = ^-\\iss\-\\issr
l) (5.22) 



where i()(x,y,z) is the function defined in (5.16). 

U 

(i) R > tol 
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(ii)  \\F\\jK = fj<l 

1/ (iii) ||<5||„ <x>/(i + >j) 1 

then 

<Ts(C)>t0l><Ts+1tC). (5.23) 

// 

(iv) K > tol 

(v) K-
1
J\\F\\

2
F + ||e^X||2 - \\Fef = rj < 1 

M\/\\G\\2F + \\Fe/ + \ls/<tol(l + rj)   l 

then 

Vi(^) ^td ^ <%(<?)• (5.24) 

Proof. Using the fact that for any matrix A, \\A\\ < \\A\\ , it is simple to show that 

the conditions (i)-(iii) satisfy the hypothesis of Lemma 5.5. Thus, (5.23) immediately 

follows. 

Let 

s-l     p-s+1      n-p 

c = 

L 0 0 s-l 

F G 0 p-s+1   , 

0 0 0   , n— p 



where 
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L   = 

F   = 

s-\     i 

L      0 

-T      7 W I 
ss 

s-1 

( -T\ w 

\F I 

,    w = L  e 

•    F=[ F   f. iF   /.)•    A" Fe 

G   = 

1     P-* 

55 1 

p—S 

Then, it is simple to verify that 

\\nl = \\F\\l + \H\2-\\ff 

I2, licii2r = ml + »//+iy2 

Again, the conditions (v)-(vi) ensure that ||.F||n, and ||ö||„ satisfy the hypothesis of 

Lemma 5.5. Hence, (5.24) also follows.   D 

The conditions (iii) and (vi) make certain that there exists a reasonable gap in the 

spectrum. When the conditions (i)-(iii) are satisfied, updating results in a rank increase. 

Similarly, when the conditions (iv)-(vi) are met, downdating results in a rank decrease. 

From the theorem we see the importance of keeping ||F|| as small as possible. Several 

ways to do this are proposed in [41, 42, 104]. 
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The theorem still holds even if K is replaced by n K \\L~ || in (5.22). We can 

explicitly compute \\L \\„ in ö{n ) flops as described in the following section. In some 

cases, this may be a more pessimistic bound than the one in Theorem 5.1. 

We should note that there is still a possibility that R could be any underestimate 

of er, (Z). Thus, if the conditions of this theorem are not satisfied, then the condition of 

X will still have to be estimated. When the conditions (iii) or (vi) are violated, indicating 

that there exists little gap between them, one must refactor or redefine tol. If none of 

these work, one can conclude that the ULVD may not be suitable for tracking subspaces 

for the problem under consideration. 

One of the factors that might affect the rank estimation using this scheme is 

incorrect rank estimate from the previous update/downdate. This problem, however, 

can be solved by computing the initial factorization using the SVD for an accurate rank 

estimation. Although the SVD is more expensive to compute than the ULVD, the cost 

will become negligible when amortized over the cost at the subsequent updating and 

downdating steps. 

Next two sections will show how to track efficiently the quantities, \\L~ || „, \\F\\ _, 

and ||G||F. 

5.3.2    Tracking ||X_1||F 

We begin with the following lemma. 

LEMMA 5.6. Assume the hypothesis and terminology of Lemma 5.3. Then, 

\L-% = \\L~ltF^\ (5.25) 
7 
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Proof, From (5.12) we see that 

\\L-YF=\\L-X^-±M^1- 

Then, (5.25) follows directly from Lemma 5.3.   D 

Because of orthogonal invariance of || ■ || „ we observe that 

||{x(V1llF = l|i"1lljP 

\\{L{3YX = \\{L{2)r% 

ii{^(5)r1iiir = ii{^(4)r1iijp 

where we used the terminology of Algorithm 5.1. Thus, the steps in Algorithm 5.1 that 

we need to consider updating \\L || „ are Steps 2, 4, and 6. The following lemmata give 

the formula for each step. 

LEMMA 5.7. Assume the terminology of Algorithm 5.1. Then 

n(3)i2      ,.(4),2 

V3¥5) 
(5.26) 

Proof. Since 

IK^WF = 

ii^Viil = 

(z) _, 2    i + ||{z3)rV3)||2 

H<4l>   X+ 3)2 ~ 11    F       {fir 

(3)  _j  2       1 + ||{Z(^}-V3)||2 

ll^?>     «F+ fc  
t'ifcib ' 

(5.27) 

(5.28) 



we see that 
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\\{L 
(4) -l 2 m -l 2    i + IK^rV^II2 

<©2 

+ 
i + IK^'rW 

(5.29) 

By Lemma 5.3 we obtain 

i + IK^rV3'!!2 
1 

oil')2 €>2' 
(5.30) 

Substituting (5.30) into (5.29) yields the result.   D 

Since P* is not available at Step 4, and \\{I,   '}     \\F = \\{L     }     || F, we update 

this at Step 5. 

LEMMA 5.8. Assume the terminology of Algorithm 5.1. Then 

\\{L{2)y% = \\{L{l)rl\\l- 

\\{L
{6)

}-% = ii{£(5)rYP- 

\\c\y 
F {,g>>2 

F {tf? 

(5.31) 

(5.32) 

w/iere I(2)c = h, and {L^fd = /j4). 

Proo/. Let 

£(!) = 
-(I) \ 

L& = 
(2) 

0      9 (2) 
11 

= W» 
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Then we obtain 

|,{£<VYF    =    iK^Vll2^    +"{     (1   2
A    " (5.33) 

WiWrX  =   ll^r1!!^1411^1*1'2 (5-34) 
F {9\\T 

By orthogonal invariance, we see that \\{Ir '}     11* = \\{L    }     Hen so that 

l|{^(2)}   %    =    ll^(1)}   % + —~ m 2   
l (5-35) 

l+ii^W 
<*{?>' 

By Lemma 5.3, we see that 

i + IKi'"}-^"!!2 

toil')2 <»S?>2' 
(5.36) 

Substituting (5.36) into (5.35) yields (5.31). The proof of (5.32) is similar.   D 

Computing ||{X(2)}_1||F and ||{X(6)}_1||F requires 0{k2) flops for forward and 

backward substitutions, respectively, and ||{lA '}     ||„, 0(1) flops. 

Finally, when there is a rank change in Step 8, we use the relation, 

—i2   —i2  i+iitf^ir,1!!2 
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where 

L = 
w      I 

(5.37) 

kk I 

Thus, it takes ö(k ) back substitution. 

All of these formulae also work for updating as well as downdating for obvious 

reasons. Updating and downdating procedures differ only on Step 4 when updating and 

downdating 2x2 matrices. Thus, r' is computed in two different ways. Therefore, the 

formula (5.26) can be also used with the updating procedure. 

5.3.3    Tracking ||.F||F and \\G\\F 

For completeness we show how to update the \\F\\„ and \\G\\„ in Table 5.1 al- 

though it was partially described in [13]. Here, we denote gy = [G^]e , i = 3,4. Note 

here that having calculated ||<^ '|| and ||$r '|| to compute \\F^ ^||„, computing \\G^ '\\F 

only requires 0(1) flops. As in tracking \\L ||„, all of the formulae in Table 5.1 also 

work for updating as well as downdating. 

Table 5.1.   Tracking IIFIL and NGN    for the Improved ULVD Procedure 
F F 

Steps Updating Formula Flops 

2 11^ = 11^ HI/!'Y 
\\G(x=\\^]t-{&^{9(y 

O(k) 

0(1) 

4 ii^ii;=ii^n't-{^+{5|:r 0(1) 

6 \\FX=\\F(X+K^-K^ 
iiG(4)iii=iiG(3)iii-ib!3)ii2+ii5!4)ii2 

0(p - k) 

O(l) 
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5.4    Numerical Examples 

In this section, we present a few examples from numerical experiments. These 

tests were performed using MATLAB on a SPARCstation 5 in IEEE Standard double 

1 R 
precision with machine precision «10      .As in Chapter 4 the algorithm employs the 

sliding window technique from signal processing. 

At each step of the sliding window method with the window size m , an m   x n 

data matrix is constructed from anmxn observation matrix A by adding a new row to 

the data matrix in the previous window and deleting the oldest row from it. In step j, 

the row rn   + j of the observation matrix is added and the row j is deleted, giving the 

data matrix A.. The ULVD of the initial window matrix A., which consists of the first 
3 0' 

m   rows of A, can be obtained by computing its SVD. 

Then Algorithm 5.1 takes the lower triangular matrix (middle part of the decom- 

position), the orthogonal matrix (right part) as initial input and the modifying vector 

T r, and successively modifies these matrices at every window step. The vector z = V  r 

is computed at the beginning of each window step. 

We tested our algorithms in the context of the total least squares (TLS) problems. 

See Section 2.7 for details. We use the TLS solutions from the Jacobi SVD as reference 

in checking the accuracy of the solution and rank estimates of our algorithms. 

Fig. 5.3-5.5 show the rank estimates by Algorithms 4.1 and 5.1. The horizontal 

axis represents the window steps and the vertical axis the numerical rank of the window 

matrix. 

The distance between the subspaces is given in the next plot using the Definition 

2.3. Let 

A. = Y.Z.WT,    W. = (W.,   W..) 
3        3   3    3 J Jl       J2y 
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be the SVD of A. computed by the one-sided Jacobi method at step j. Let 

A. = U®C®{V®f,    V® = (V®   V®),    i=l,2 
3 3      3        3 3 3^       3^ 

be the ULVD of A. computed by Algorithms 4.1 and 5.1, respectively. 

(i) Note that here we are discarding U)   , i = 1,2. Finally, let 

C® = ?®2W{W®f,    W® = (W®   W®),    t = l,2 
3 3      3        3 3 v    Jl        J2 " 

(i) — by the SVD of C\ ' computed by the one-sided Jacobi method. Define W. by 

w® = ( w® fy(i) ) = vW\   i = 1,2. 
3 K      j\ j2   '        3       3 

Define the angles between the subspaces 

sin Of =|l {W$fv$ II,    sin öW =|l {^j?}^ II'    i = 1'2- <5-38) 

The angles 0., Z = 1,2 represent, respectively, error between the true noise subspace from 

the Jacobi SVD and the approximate one from tracking the ULVD, the approximation 

error from the ULV decomposition, and the subspace errors from ULV subspace tracking. 

We plotted log (sin 0^ ')indashed-dot,log (sin0| ') in solid, and log (sin0^ ') 

in dotted line on the vertical axis of the second graph, sin 6). ' is the approximation 

errors discussed by Fierro and Hansen [43]. 
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Finally, the TLS errors 

(SVD) _ ^ULVD). 

C«'="        ||xf™)||        "'    i=I'2 

are given in logarithm in the last plot. Here, ar       ' and x\ ', i = 1,2 are the TLS 

solutions using the SVD and the ULVD with Algorithms 4.1 and 5.1, respectively. On 

the third graph of each figure we plotted C in solid and Q  in dashed-dot. 

The following examples were also used in [13]. 

EXAMPLE 5.1. A, a 110-by-6 random matrix, 6, a 110-by-l random vector. Entries of A 

and b were chosen from a uniform distribution on the interval (0,1). 85 randomly chosen 

—4 
rows of (A; b) were multiplied by 7 = 10     in order to vary the rank of the matrix, and 

_2 
tol — 10    . The window size p used was 12. 

EXAMPLE 5.2. Same as Example 1 except that 7 = 10     and tol — 10 

EXAMPLE 5.3. Same as Example 1 except that the matrix had an outlier of size 10   at 

(18,1) position. 

The first plot shows that both algorithms estimated the numerical ranks correctly 

throughout the sliding window steps in spite of frequent rank changes. Thus the rank 

estimates from both algorithms and those by the Jacobi SVD were identical. As expected, 

(i) 
the errors in the TLS solution are almost exactly the same as the size of sin 6K.   , i = 1,2 

in (5.38). 

The second plot in each figure shows that the noise subspace error is very small 

giving accurate TLS solutions.   The quantities in (5.38) are shown to be essentially 

identical indicating that the subspace errors from our algorithm are from the rounding 

errors, not approximation errors. 
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Moreover, both algorithms perform well even when G becomes singular (indicated 

by '*' for Algorithm 4.1 and '~' for Algorithm 5.1 in the first plot). We tested several 

other examples, and these results were typical. 

As in [13] we used the Corrected Seminormal Equation (CSNE) technique when- 

2        2 ever the downdating is not possible, namely, ||a|| > 1 in (4.5), and ß   + ß   > 1 in (5.6). 

We indicated the time steps where the CSNE was used with '+' for Algorithm 4.1 and 

'#' for Algorithm 5.1. 

For Example 1, we plotted the norm estimates by Algorithm 5.1: ||Z~ || computed 

by the SVD (in solid), R of Theorem 5.1 (in solid dot), and \\L    ||    computed by the 

Algorithm 5.1 as described in section 5.3.2 (dotted), again on a log scale, relative to tol. 

This verifies the bound from Theorem 5.1. 
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Chapter 6 

Modifying the Singular Value Decomposition 

6.1    Introduction 

We discuss methods for updating and downdating the SVD and partial SVD of 

A € 11 of the form (1.2) and (1.3). Throughout this chapter we use B in place of 

M in (1.1) to denote diagonal form or partially reduced bidiagonal form. 

Unlike the Jacobi-type SVD updating procedures [79, 80, 81], we transform up- 

dating/downdating problem into a problem of finding a bidiagonal matrix B and an 

orthogonal matrix V such that 

BTB ± zzT = VBTBVT (6.1) 

where z is defined in 1.9).  Throughout this chapter the bidiagonal matrix B has the 

form 

/ 
0 0 

0 

B = 

Tj    ^     0 
\ 

0    72    <f>2 

0 

0      0 

7     „    <t>     „ 0 'n-2    ^n-2 

7„   i <t>
n   i n—1 n—1 

0 7 n    ) 
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We may also use the MATLAB-like shorthand 

B = bidiag(7(l:n),<£(l:n- 1)) 

to denote the above bidiagonal matrix.   As in modifying the ULVD from the previ- 

ous chapters, our approaches to downdating the decompositions use ideas from chasing 

algorithms [1, 93,115, 125] and from the downdating algorithm due to Saunders [46, 85]. 

The following are the main results of this chapter: 

• Procedures for updating and downdating the SVD which obtain bidiagonal forms 

such that 

B 

I n-l 

I - T\ 
Bl    4>ffx  \    I 

o        £„ 
V / 

i.-i 
\     B2      } 

* W> (6.2) 

where B and B are upper bidiagonal, and / = k + 1 for updating and / = k 

for downdating. This form preserves more of the accuracy of the small singular 

values and is not achieved by standard chasing procedures. We can then use one of 

several algorithms to find the singular values of the bidiagonal matrix B to relative 

accuracy [11, 35, 40]. The singular vector matrix can be modified by a procedure 

due to Gu and Eisenstat[54] in 0(mn) operations (the constant on ran depends 

upon machine precision). That is the same order of complexity as for the ULVD 

methods with similar stability properties. 

A perturbation theory for the singular subspaces from modified matrices and block- 

wise error bounds for the above procedures. 
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The condition (6.2) is achieved because the algorithms for both updating and 

downdating problems produce an orthogonal matrix V that has the form 

V = 

k        n—k 

k 
(6.3) 

n—k 

There is never a rotation of the first k columns of B with the last n-k. 

In the following section we describe the secular equation approach as an alterna- 

tive to chasing algorithm. We show that this approach can fail to separate the singular 

values in separate blocks. In Section 6.3 we give some basic chasing procedures for 

modifying the SVD, and our chasing procedures which have the property (6.2). Section 

6.4 gives the perturbation theory and discusses error analysis. Section 6.5 gives some 

computational examples. 

6.2     Secular Equation Approach 

The alternative to chasing algorithms for modifying the SVD is that of finding 

the zeroes of a particular spectral function [10, 25, 49, 53, 54, 67, 97], 

/(ä) = l + a£^i-2=0 (6.4) 

where a > 0 for updating and a < 0 for downdating, and ä is the singular value of the 

modified matrix. The corresponding singular vector is given by 

(BTB-ä2I )_1z 

\\{BTB-ä2In)   lz\\ 
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Here, we assume that B is diagonal. That approach, as yet, does not allow us to separate 

the singular values into separate blocks as shown in the following example. 

EXAMPLE 6.1. Let 

B = 

1   0 

0   1-10 
-10 

1    1-10 
-10 

QR decomposition B is given by B = QR where 

Q = 

/ -1 -1 -1 \ -7.0711-10 4.0825-10 -5.7735-10       * 

0 -8.1650-10-1 -5.7735-10-1 

-7.0711 • 10"1 -4.0825 • 10_1 5.7735 • 10_1 

/ -11 \ 
-1.4142   -7.0711-10 

R = 0 

0 

-1.2247-10 

0 

-10 

The SVD of R is given by R = USV    where 

U = 

-1.0000 
-21 \ 4.3301-10 0 

-4.3301-10   21    -1.0000 

0 

0 

1.0000 

S = 

1.4142   0 

0 1.2247-10 

0 0 

-10 V = 
-5.0000 • 10 

-11 \ 

5.0000-10   !1    1 
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Let 

7.0711-10   l      -4.0825-10   l    -5.7735-10   l 

U = QU = 3.5355-10   21    8.1650-10   l 

,-1 -1 

-5.7735 • 10 

,-1 7.0711-10 4.0825-10 5.7735-10 

It can be verified that B = USVT. Let 

D = BTB 

1.0000   0 

0 

1.0000 

 20 —20 
1.0000-10 1.0000-10 

-20 
1.0000    1.0000-10 1.0000 

Then its engendecomposition is given by D - XDX    where 

X = 

7.0711-10   *    7.0711-10   !      * 

-1.0000   0 

7.0711-10   l    -7.0711-10   l 

D = 

0   0 0 

0   2.0000   0 

0   0 2.2204   10' 
-16 

-20, 
Notice that both the small eigenvalue of D (should be about 1-10      ) and the subspaces 

are wrong 
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6.3    Ordinary Chasing Algorithms 

6.3.1    Basic Chasing Routines 

In this section, we present an example of an orthogonal chasing scheme that 

produces orthogonal matrices D,V £ 1Z        such that 

B = DTBV,    VTz = pev    p=\\z\\ (6.6) 

where B is lower bidiagonal. For the 4x4 case, it is given in Fig. 6.1. Here r and x 

denote possibly large elements and e and y denote small elements. See Algorithm 3.4 

for the formal description. 

In theory, this could be used to produce an updated or downdated bidiagonal 

matrix very easily. We have 

V1 (B1 B±zzI)V = B1 B± p*e e1 = B1 B 

If J3    = bidiag(7(l:n),<?!>(l:n - 1)), then B    = bidiag(7(l:n),<^l:n - 1)) is identical 

^T _ 1^2       2 
to B    except that 7   = W7   — p . This is illustrated in the last rotation in Fig. 6.1, 

denoted by a pair of —*•.   For updating it is simply a Givens rotation.   It should be 

noted for downdating that the assumption I7 | > p is equivalent to the assumption that 

T T . B   B — zz    is positive semi-definite. 

Such a procedure shown in Fig. 6.1 does not preserve the separation of subspaces 

for large and small singular values as accurately as we would like.  Large elements can 

get chased down into the lower part of the bidiagonal matrix B as shown in the following 

example. 
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i   i 
(T \ (r 

\x    x    y    y) 

(r       ^ r 
r r 
e e e 

\x x 0 O/ 

\ 
T      T 

T      T      T 

e    e 
\p   0 0 0/ 

\ 

e e 
e e 

1 1 

(T        ^ r 
r r ? 

e e 
\x x 0 0/ 

i    I 

(r    ^ ^ 
r r f" 

r r 
e e 

\p 0 0 0/ 

i 1 

r r 
e e 
e e e 

x x 0 0/ 

e 
e e 

\x x » 0/   V 

i    i 
(r \ -» /r f 

r       —*  r r 
r r        r    r    T 

e    e e e 
\x x 0 0/ 

/ 
r 
r r 

r r 
e e e 

\p 0 0 0/ 

I 1 

r r 
r r f 

r e 

T      T 

r    r 
r    r 

\p    0 0 0/  \p 0 0 0/ 

r r 
r r 

r r 
\p 0 0 0/  \0 0 0 0/ 

Fig. 6.1.   Ordinary Chasing Procedure 
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EXAMPLE 6.2. Suppose we have 

B = diag(0.2071,1.510 -10   3,8.081-10   4,6.383-10   4,5.184-10   7) 

z = (7.964 • 10"3,8.012 • 10~3, -9.102 • 10~3, -2.821 • 10~3,1.607 • 10~2)T 

After forchase is applied to 

/        \ 
B 

\Z    ) 

(6.7) 

we obtain B    — bidiag(7(l: 5), <£(1:4)) where 

7(1:5) =(7.864 -10   2,-5.357-10   2,-1.317-10   3,-7.283-10  4,-6.414-10  4)T 

4>{l: 4) = (-0.1852,4.134 • 10~5, -4.030 • 10-4,8.115 • 10~5)T 

Here 7(5) > tol, so that the smallest singular values may be overestimated. In fact, there 

should be no rank increase as we will see in Example 6.3. 

In the next section, we show that forchase and backchase procedures described 

in Section 3.2.1 can be combined in a fashion that allow us to update or downdate the 

SVD more accurately. 

6.3.2    The Updating Algorithm 

Let 

B = diag(7(l:n)),    7j > • • • > 7fc > £ > Hk+1 > • ■ • > 7„- 
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We partition B into 

B1 = diag(7(l: k)),    B2 = diag(7(A; + 1: n)). 

Let z be defined in (1.9). Then the following algorithm updates the diagonal matrix into 

upper bidiagonal matrix. 

ALGORITHM 6.1 (PROCEDURE FOR UPDATING DIAGONAL MATRIX). Given input 7(1: n) 

that contains a.(A),i = 1,...,n and the update vector z, this procedure produces the 
1 

updated bidiagonal matrix B = bidiag(7(l:n),<£(l:n- 1)). We also input k the number 

of singular values greater than tol. 

_      _ i» y U —      — (Ti—jt^ y (n Jf\ 
Step 1. Compute orthogonal matrices U,V G H       and I/, V G fcv       ' 

such that 

^JB.V = B[1),    V1x = p1e
(£\    Pl = \\x\ fv 

-R(!)      v „=„>"*) Ü;B2V2 = B^,    V = ^2el        '    ^2 = NI 

(6.8) 

(6.9) 

where f?; ' is upper bidiagonal, and B). ' lower bidiagonal. 
1 ~ 

Step 2. Let Q, = .7(1,3,0 ) and Q   = .7(2,3,0 ) define Givens rotations for some 

8.,i =1,2 such that 
1 

« 
.(1) 

P2 *?) 
0 = 0 7(2) 

'ik+1 

(1) 0 0 
Jb+1 1 \ / 
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that is, use Algorithm 3.8 for updating 2x2 matrix, 

[W-21i-p^1,.°>C<',<>2>- 

Thus if we let U  = J(k, n + 1, OJ J{k + 1, n + 1,6J, then we have 

( B®   4>{2)eeT\ -°1      9k    k \ 

\ 

0 B, 

0 

(2) 
2 

0 

/   n(l) 

tf 
(2) 

T T 
\p\ek    p2e\   I 

(n—k)x(n—k) 
Step 3. Use Algorithm 3.6 to construct an orthogonal matrix U. € 7£v       ;   v       ; 

such that 

B = 'MS   ' 
\°     B2/ 

h     ° 
\ 

\°     \l 

where B   is upper bidiagonal. Thus U and V are given by 

D = 

10      0 

0   U      0 

0     0     {/. 

t/„ 

2 / 

0    'IT    0 
4 

0      0     1 

V = 
vl ° 
0    V. 2 / 

(6.10) 

Note that after Step 1 the updating problem is reduced to a 2 x 2 problem. Step 

3 is to restore the matrix to upper bidiagonal form, which is equivalent to a step of qd 

procedure. The block diagonal form of V in (6.10) is highly significant. Any modification 
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of the subspaces associated with the first k singular values and the last n — k singular 

values will be computed in the reduction of the bidiagonal matrix B. 

Fig. 6.2-6.3 show the reduction steps for this algorithm with n = 7 and k = 4. 

Here, a pair of -^ denotes the application of Givens rotations that corresponds to Step 

2. Unlike the ordinary chasing algorithm, Algorithm 6.1 preserves the block structure 

as illustrated in the following example. 

EXAMPLE 6.3. When Algorithm 6.1 is applied to (6.7), we obtain 

7(1:5)= (6.441-10   4,9.869-10  4,3.974-10   3,5.009-10   2,3.818-10   7)T 

(j>(l: 4) = (1.054 • 10~4,7.309 • 10~4,0.1862, -4.444 • 10_8)T 

keeping the separation of the large and small blocks, and so preserving the accuracy of 

the tiny singular values. 

6.3.3    The Downdating Algorithm 

An immediate difference between the updating and downdating procedures is that 

we write B in the form 

B = d\zg(BvBrOn_p) (6.11) 

where 

B1    =   diag(7(l:fc))= diag((T1,...,(Tjk), 

B2    =   diag(7(A; + l:p)) = diag(CTik+1,...,(Tp), 

anc 

<Tk>€>(Tk+v   Vi = '" = CT« = 0' 
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\ /: r \ (r r 

e    e    e 
e    e 

/      \ x    x    y 

1    1 

\     lT    r \ 
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T      T 

T      T      T 
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e    e 

e    e 
x    y I 

T       T 
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t 
e    e 

e    e 
x    y 

r    T    r 
T    r 

T 

e 
e    e 

e    e 
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e    e 
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Fig. 6.2.    Bidiagonal Reduction Steps for Modifying the SVD 



119 

(r    r 
r    T 

T      T 

T 

e 
e    e 

e    e 
x    y 

IT    T 

r    r 
r    r 

V 
t 
e    e 

e    e 

/r    r 
r    r 

r    r 
r    r 

e 
e    e 

e    e 

(r    r 
r    r 

T      T 

T    r 
e    e 

e 
e"   e 

/r    T 

r    r 
r    T 

r    r 
t    e 

e    e 

Fig. 6.3.   2x2 Updating/Downdating Steps and a qd Step 
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thus allowing for the possibility that some singular values are exactly zero. As in down- 

dating the ULVD, we partition the vector z in the form, 

T 

(       \ 
x 

\yo/ 

k 

p—k 

n—p 

Here, y   is presumed to be the result of rounding errors and is ignored.   However, if 

\\y \\ > fi * a JA), then we should not downdate, we should refactor. 

T Even when there are no zero singular values, and even though z = V  r and r is 

T T the first row of A in (1.1), B   B — xx    is positive semi-definite. However, occasionally, 

T T even that is not the case. The usual way to test if B   B — xx    is positive semi-definite 

is to solve 

T B  s = x. (6.12) 

If ||s|| > 1, then we cannot downdate B. by a;. One possible remedy is to try to obtain 

T   T a better value for x = V   A  e .   That can be done using the corrected semi-normal 

equations (CSNE) [18, 20] as we have used for modifying the ULVD in Chapter 4. 

If ||s|| > 77 where 7/ < 1, then solve 

B c = s. (6.13) 

It should be noted that c solves the least squares problem 

min pVjC-Cj || 
c£ll 
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and its value can be improved by the iterative improvement steps 

r = e1-AVlc (6.14) 

6x = V^ATr (6.15) 

T 
B   6s = Sx (6.16) 

s + 6s,    x ■*- x + 6x (6-17) 

At this point, if ||s|| > 1, we signal that downdating is not possible, and thus other options 

should be considered, such as refactoring or choosing a higher threshold e.  Otherwise, 

the algorithm proceeds in a similar manner to Algorithm 6.1. 

We now present the downdating algorithm. 

ALGORITHM 6.2 (PROCEDURE FOR DOWNDATING DIAGONAL MATRIX). Given the input 

7(1: n) that contains c.(A),i — 1,.. .,n and the update vector z of the form (4.3), this 

procedure produces the downdated bidiagonal matrix B = bidiag(7(l:n),^>(l:n — 1)). 

We also input k the number of singular values greater than tol.  y   is ignored unless 

\\y0\\ > ß- 

Step 1. If ||s|| > rj where s is defined in (6.12) and r? < 1, then solve (6.13)-(6.16) 

for 6s and 6x. Update s and x as in (6.17). If ||s|| > 1 or \\yn\\ > tol m 100 * /x, 

then quit and exit; otherwise, do Steps 2-4. 

Step 2. Same as Step 1 of Algorithm 6.1. 

Step 3. Compute 

fll = W!)'     a2 = min {V7*+l' V^°l} ' (6'18) 

a = Jl - a\ - a2
2 (6.19) 
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We can then find two 3x3 Givens rotations Q. = J(l, i + 1,0.), i = 1,2 such that 

Q,Q2 

(     \ 
a 

\a2/ 

= e. 

In that case we modify the fc-th and (k + l)-st rows of the matrix 

/    (2)    A2) 

(2) 0      7 

V   "1 

Jfc+1 

*2    / 

= «A 

,(*) 

0      7 (1) 
ifc+1 

0 0 

where p   = 7^ y 1 - a . This can be done by using Algorithm 3.9, 
2 ~ 'Jb+1 

if'• 42). TJSi'=ä°™2M1}< °. TO,. •,.«,)■ 

Thus if we let £/   = J(l, Jb + 2,0 )TJ(1, k + 1,0 )T, then we have 

/   „(2)       (2)      T \ B n vi 
B (2) 

/     (1) \ '   B^>      0 

= ui 

\ P\ek       p2e\      I 

0      B 

0 

(2) 

Step 4. Same as Step 3 of Algorithm 6.1. 

,-1 We note that in (6.18) \a \ = \\B     x\\ = \\s\\. Thus B   can be downdated by x if and 

only if \a | < 1. For Algorithm 6.2, we assume that is the case. If a = 0, but a   ^ 0, 
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then 7^ = 0, whereas if a = a^ = 0, then */£' = <f>^> = 0. Fig. 6.2-6.3 show the 

reduction steps for this algorithm with n = 7 and k = 4, but, this time, a pair of —»• 

denotes the application of rotations of Saunders' algorithm that corresponds to Step 3. 

Thus we have simple algorithms to perform either an update or downdate. The 

downdating procedure has the following consistency property similar to Proposition 4.2. 

PROPOSITION 6.1. Assume that Algorithm 6.2 is done in exact arithmetic, that U and 

V in (4-1) are exactly orthogonal, that U = UU satisfies Ue   — e , and that z — V  r 

~ ~T 
is computed exactly. Also let V = VV and z = V   r = p e,+ ^„e,      . If 

A + SA = 
r   + or 

= u 
B 

vT, 
\   Ä + SÄ   J l°J 

(6.20) 

then 

A + 6A0 = 

T     \ 

A + 6A 
U 

z 

B 

\   °   / 

VT. (6.21) 

Thus \\8AA\ = \\SA\\ < \\SA\\. 

Proof. We have that 

U1 AV 

plek 

B, 

pel 

^eJkel 

B„ 

(6.22) 
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and 

DJ 
(
 ^ 

\0/ 

piek   (P2 
+ S^ei 

v = B, 

\ 

hekei 
B„ 

(6.23) 

/ 

Thus from (6.20), ||<Sr||2 = 6p"^ + 6p^. Using (6.23) and noting that Ue^ = e])we have 

~T u1 z 

\B  I 

I       T     \ 
T 

V = 

Ä + SA 
(6.24) 

T      /       -T\ 
Thus comparing (6.24) with (6.21), we have 6A    = I 0  6A   1. The result immediately 

follows.   D 

We note that Proposition 6.1 is merely a consistency property. What it says is 

that approximation used in Step 3 of Algorithm 6.2 does not increase the error over that 

caused by assuming that Ue   — e . 

6.3.4    Extensions to Partially Reduced Bidiagonal Forms 

Algorithm 6.1 and 6.2 can be easily extended to the case where either B   or B 

is bidiagonal as long as they are decoupled. We need only modify Step 1 of Algorithm 

6.1 and Step 2 of Algorithm 6.2. Van Huffel and Park [115] describe chasing algorithms 

ikxifc 
that given B. upper bidiagonal, produce orthogonal matrices U , V £TZ        such that 

V<¥r   *f* = 'ie* 

where B   is upper bidiagonal. 

Fig.   6.4 shows how such an algorithm would work on a 5 x 5 example.   Thus, 

using algorithms such as the zero-shift QR [35] or the qd algorithm [40], it is possible to 
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find the singular values that are below a certain threshold, and thus obtain a partially 

bidiagonal matrix of the form (1.3). 

6.4    Error Analysis 

6.4.1    Error Bounds for Blockwise Algorithms 

We now present error bounds for the process of one update or downdate using the 

procedures in Sections 6.3.2 and 6.3.3. All of the matrices below are computed except 

those with S in front of them. 

The following two propositions are proven in the Appendix of [14]. 

PROPOSITION 6.2. Algorithm 6.1 produces an updated matrix B such that for some or- 

thogonal matrix D, and V we have 

UJ 

J\ I 

B 
V = 

\ 

KB + 8B + 6BQ ) 

where 

SB = d\<ig(6Bv6B2) 

6S0 = ^ke/k + ***+! Vt+1 + *7*+ieJb+ier+i 

ll^ll^/i/^nJIIBjII + CJC/i2) 

||Ö2|| < /x/2(n) ||*2|| + 0{n2) = fxf2(n) a^B) + Oij?) 

|^7,|<M/,(n)|7.| + ö(/x2),    j = k,k+l 
3 o j 

where f.(n) = 0(n), i = 1,2, and f.(n) = 0(n), i = 3,4. 
I * 
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From [11, 35] this relative change in the entries of the bidiagonal matrix makes 

only relative changes in the singular values. Thus this update procedure is very stable. 

PROPOSITION 6.3. Algorithm 6.2 produces a downdated matrix B such that for some 

orthogonal matrices U and V we have 

( 

ÜJ 
B + SB 

0 

\ 
V = 

( T-\ (z + 6zyv x 

\ 
B 

where 

6B = &a&(6Bv8B2) 

||^|<M/5(«)P?J + <V) 

||M?2I| < M/6(n) p2|| + 0(M2) = M/6(») °k+1W + 0{,?) 

||*z(l:fc)||</i/7(n)||z(l:fc)|| + 0(^2) 

||^(fc + l:p)|| < fifJn) \\z(k + l:p)|| + ö{ß
2) 

where f.(n) = 0(n ), i = 5,6, and f.(n) = 0(n), i = 7,8. 
z * 

These results are as good as can be expected for any such procedure. As we 

state in the next section, we can expect sharp separation between singular subspaces 

associated with large and small singular values. 

6.4.2    Perturbation Bounds for Invariant Subspaces 

We consider in this section the effects of the bounds in Propositions 6.2 and 6.3 

in the error in certain invariant subspaces of B resulting from Algorithms 6.1 and 6.2. 

Two perturbation results show that we expect that the subspaces for large and small 

singular values will be very accurately computed. 
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The componentwise backward error SB   in Proposition 6.2 has a very small effect 

on the < 3rror in the subspaces. The following result is given for completeness. 

PROPOSITION 6.4 ([39, LEMMA 4.5]). Let 

■ B = bidiag(i1,..., 7n; ^,..., ^j) (6.25) 

and let 

lshidil«(Vi Vn'vA vA-i)- (6.26) 

Let 
2n-l 

n=   JJ  max{a ,a     } - 1. 
i=l 

Let w , ...,w   be the right singular vectors of B and letw,...,w   be the right singular 

vectors of B. Let a ,.. .,a   be the singular values of B and define 

p. = mm|2,rnm     ^     j , ■, = 1,2,.. .,n. 

Let Z. 
i 

= (w ,...,w.    ,w.    ,...,w ), that is, the right singular vector matrix of B 

with its i-th column deleted. If p. > n, then 

wzTw.\\<^(^1+r>Kv-). 1    l             \ Pt-V       2) 
(6.27) 

Thus the effect of the relative errors SB   on the updated matrix B is minimal 

and has little effect on the singular subspaces. 
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\\6B2\\<SBe + 0(f?) 

|Ml:*)||<*J|*(l:*)|| + 0(*O 

\Mk + l:p)\\<6z\\z{k+l:p)\\ + 0(p2). 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

Here, SD < /D(n)/z and 6   < f (n)fi where fn(n) = 0(n ) and / (n) = 0(n). 
D ü Z Z D Z 

PROPOSITION 6.5. Let B and B + SB be diagonal matrices such that 

B = 

k n—k 

Bl Vleiel 
0 A. 

SB = 
n—k 

k        n-k 

0      SB„ 

k 

n—k 

where 

l^jH < tfgpj + 0{n\    \\6B2\\ < 6Be+0(n2), Vl6l 

V      B2      } 

< e. 

,nxn 
Let a   > ■ ■ ■ > a, > e > a.      > ■•■ > a . Let W, W G 71        be the matrices of right 

1 ~        ~    k k+l ~       ~    n 

singular vectors of B and B + SB, respectively. If 

w = (w1 w2\   w = (wl w2), (6.32) 
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where W    W  g llnxk, and W    W  £ ftnx("   k\ then 

i<v2iif< 2^1^11 \\B-\\k;^a 
2€ 

k       k+1 
+ 0(\\SBf). (6.33) 

Proof. Let w., i = 1,2,...,/: be the t-th right singular vector of B + SB and let 

w., j = k + 1,..., n be the j-th singular vector of B. Then from standard perturbation 

-T - 
bounds on the eigenvectors of B  B we have 

|Ä.|    =    -i j j =L + 0(||Ö||2) 2        2 
<T. — a. 

t       j 

(6.34) 

8Bw.\\a. + \\6Bw.\\(T. 
< »     3 3     » fii.2s 

2        2 
o\ — a. 

i        3 

+ 0(\\6B\n (6.35) 

We now bound ||^5w.|| for i = 1,2,...,n. First, let 

w. = 
2 

tu.   ' 
I 

(2) 
\Wi     / 

k 

n—k 
(6.36) 

Then we have 

V   0      B2   ) { „« J 
= C7. 

2 (2) 
— a .y. 

where y. is the corresponding left singular vector. Thus we have 

(1) D-l, (1) 7 (2)x 
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Therefore, 

IKa)H = \\B-1\\(tri + \^k+1\) < \\B-l\\(cr. + e). (6.37) 

Now we can say that 

\\6Bwf <\\6BlWM\\2 + \\6B2wf\\2 

which leads to 

\\SSiv.\\<SB\\B1\\\\B^1\\(a. + €)2 + Sy. (6.38) 

Equation (6.38) leads to 

\\SBw.\\ <SB(a. + y/2 6)11^11 p"1«. (6.39) 

Combining (6.35) and (6.39) yields 

1 V",-l * W HBi I'— i—2 ~ + °(ll**ll ) ^                                                     a. - a. 
«       J 

which is bounded by 

T                                     1    (<T. + s/2 e)                   _   o 
l^^.l^^ll^lip/ii-^——+ 0(||^||2). (6.40) 

i        j 

Thus for all i = 1,2,..., fc and j = k + 1,..., n, we have 

|i5V|<*   p || ||B   1H—^— + 0(||^||2). (6.41) 
k       Jfe+1 
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which is now independent of i and j. The use of the Frobenius norm on W = (w ,. ..,w,) 

and W2 = (wk+v...,wn) yields (6.33).  D 

Proposition 6.5 implies that the updating algorithm will always yield accurate 

subspaces for the first k and last n-k singular values. For Algorithm 6.2 we must also 

bound the effect of hz which is qualitatively slightly different. 

-T - 
PROPOSITION 6.6. Let B and W be an in Proposition 6.5 and let it satisfy B  B = 

VBTBVT - zzT where V € TZnXn is the orthogonal matrix from Algorithm 6.2. Let B 

satisfy if B = VBTBVT - (z + Sz)(z + 6z)T and let 6z have the form (6.30)-(6.31). 

Let z = (xT yT)T, xeTlk,ye Tln~k and assume that \\y\\ < e. Let W e TlnXn be the 

matrix of right singular vectors of B and define W^ and W^ from (6.32). Then 

WlW2\\F    <   Szy/k{^k).uR\\B1\\\\B1
1\\x 

To r. 
ak   CTfc+i   ^-Vi 

where 

H-T_»      B_„D„„5-li 

+ 0(\\6z\\2) (6.42) 

w = ||*     *ll,    »=11^11115/11 (6.43) 

Proof. Let w., i = 1,2,..., k be the i-th right singular vector of B + SB and let 

w    j = k + 1 .. .,n be the j'-th singular vector of B. Then from standard perturbation 
3 

-T - 
bounds on the eigenvectors of B   B we have 

m                \w.6zz  w. + w.z6z  w.1 _ 
|^.|    =    !_J 3—1 L + 0(\\6z\\2) (6.44) 

i 2        2 a. - a. 
*        3 

' 
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\8z  w.\ \z  w.\-\-\8z  w .\\z  w.\ 
<     l k 2"^ L + 0(\\Sz\\2). (6.45) 

a. — a. 
*        J 

If we use the partitioning of w. in (6.36), then we have 

l/io.l = l/w^l + \yTw{2)\ = \xTB-lB.w{l)\ + \yTwi2)\ 

which means that 

\zTw.\ < \\B  Tx\\ \\Bv)M\\ + e<ua. + e,    t=l,...,n. (6.46) 

We also have that 

\6zTw.\ < \6xTw^\ + |*yT
W|(2)| < Sg\\x\\ \\v,W\\ + \\y\\ \\w\\ 

Using the facts that ||a;|| < \\B.1| and ||y|| < e and from (6.37), we have 

ifoVi<*,(iiBiini5r1ii,T.-+£)+£ 

which we simplify to 

|^
T
10.|<^||B1||P1

1
||(CT. + 26). (6.47) 

Combining (6.45) with (6.46) and (6.47) yields 

(a +2e)(a  +e) + (a  +2e)(a +e) 
T.1  ...    I       ^       £   . .   II D    II   II D—1 II I I J. t  \w*w\    <    6u,\\B\\\\B   *\\  2       2 

»      J 

,2 + 0(\\Sz\n (6.48) 
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<    «wllfljIIIIUj 
a.+ 36 
_J  
(7. — 0\ 

+ Ac 
2       2 

a. — a. 
i        J 

+ o(iiMh- (6.49) 

We note that this for i = 1,2,...,/: and j = k + 1,..., n, thus we can bound (6.49) by 

IwTwAKSuWB^WB^W 
ak ~ ak+\ 

+ 4e 
2        2 +o(iifoir). (6.50) 

The bound (6.42) is obtained by computing the Frobenius norm of W   W , where W  = 

(wv...,wk)*adW2 = (wk+v,..,wn).   D 

6.5    Numerical Examples 

In this section, we present a few examples from numerical experiments. These 

tests were performed using MATLAB on a SPARCstation 5 in IEEE Standard double 

precision with machine precision «10 .As in Chapter 4 the algorithm employs the 

sliding window technique from signal processing. 

At each step of the sliding window method with the window size m , an m   X n 

data matrix is constructed from an m x n observation matrix A by adding a new row to 

the data matrix in the previous window and deleting the oldest row from it. In step j, 

the row m„ + j of the observation matrix 
0 

Then Algorithms 6.1 and 6.2 take the diagonal matrix and the orthogonal matrix 

(right part) as initial input and the modifying vector r, and successively modifies these 

matrices at every window step. The vector z = V r is computed at the beginning of 

each window step. 

I 
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The one-sided Jacobi method [36] was used to compute the SVD of the initial 

window matrix A^ , which consists of the first m rows of A, and to compare with our 

algorithms for rank estimation and the accuracy of the subspaces. 

We tested our algorithms in the context of the total least squares (TLS) problems. 

See Section 2.7 for details. We used the TLS solutions via the Jacobi SVD as reference 

in checking the accuracy of the solution and rank estimations of our algorithms. 

In Fig. 6.5-6.7, the rank estimated by our algorithms (solid line) and the true 

rank (dotted line but not visible in the plot) are given in the first plot. The horizontal 

axis represents the window steps and the vertical axis the numerical rank of the window 

matrix. 

Let W^3' and V^' be the right singular vector matrices computed by the Jacobi 

method and Algorithms 6.1 and 6.2, respectively. Then, using the Definition 2.3, 

0   = ||wf )\p\    j = l,2,. 

where W® = (W^ W^) and V^ = (V® V®). We plot log (sin(0.)) in the 

second plot of each figure. 

Finally, the TLS errors 

r = — — 
i        ll^-ll 

are given in logarithm in the last plot. Here, x . and x. are the TLS solutions using the 

Jacobi method and our algorithms, respectively. 

EXAMPLE 6.4. A, a 100-by-5 random matrix, b, a 100-by-l random vector. Entries of A 

and b were chosen from a uniform distribution on the interval (0,1). 75 randomly chosen 

rows of [A; b] were multiplied by 7 = 10~ in order to vary the rank of the matrix, and 

tol = 10     . The window size p used was 10. 



136 

The first plot shows that our algorithms estimated the numerical ranks correctly 

throughout the sliding window steps in spite of frequent rank changes. The errors in tiny 

singular values were relatively large, and our algorithms almost always overestimated 

small singular values. However, they were close enough for the correct rank estimation. 

The second plot in each figure shows that the noise subspace error is very small 

giving accurate TLS solutions. 

—9 —7 
EXAMPLE 6.5. Same as Example 6.4 except that 7 = 10     and tol = 10 

5 
EXAMPLE 6.6. Same as Example 6.4 except that the matrix had an outlier of size 10 

at (15,1) position. 

Both TLS solution errors and the noise subspace errors show that our algorithms 

give very accurate approximation to the subspaces under consideration. Moreover, the 

algorithm performs well even when some of tiny singular values become almost zero 

(indicated by '*' in the first plot). We tested several other examples, and these results 

were typical. 

Since our downdating procedures use LINPACK downdating algorithm, it is not 

difficult to generate the cases where the algorithm breaks down when ||a|| > 1, for 

instance, when deleting a large row relative to 7 (see Fig. 6.6) or a row that contains 

outliers (see Fig. 6.7). We used the CSNE approach in (6.14)-(6.17), and indicated these 

steps by '+' in the first plot. 

The CSNE approach was used in all three examples and most extensively in 

Example 6.6 when downdating a row with an outlier. However, the performance of our 

algorithm was less satisfactory for the larger outlier. 

I 
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Fig. 6.5.    Example 6.4 
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Fig. 6.6.    Example 6.5 



139 

Rank Estimates 

0       10      20      30      40      50      60      70      80      90 

Noise Space Errors 

10      20      30      40      50      60      70      80      90 

TLS Solution Errors 

0       10      20      30      40      50      60      70      80      90 
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Chapter 7 

Parallel Implementation 

7.1    Introduction 

In this chapter we describe a fully parallel bidiagonal reduction procedure for 

modifying the SVD. In Chapter 6 we showed that blockwise algorithms produced more 

accurate subspaces than the ordinary one-way chasing algorithms which ignore the block 

structure of the diagonal matrix. A VLSI implementation of the similar chasing schemes 

for the bidiagonal reduction for updating was also described in [1, 117], but without 

considering the large and small structure of the matrix. In this section we implement 

our algorithm on a distributed-memory MIMD multiprocessor. Two storage schemes are 

considered: cyclic storage scheme and consecutive storage scheme. We will show that the 

consecutive storage scheme implements the bidiagonal reduction much more efficiently. 

The main idea behind the Algorithms 6.1 and 6.2 is to reduce the entries of the 

vectors x and y in opposite order and to chase the bulge in opposite direction, upper-left 

corner for the large block and lower-right corner for the small block. This is based on 

the two-way chasing scheme [125], which was also used in [116] with k = n/2 in the 

context of updating. The algorithm simply reduces the large and small blocks to almost 

bidiagonal form (see the 12-th matrix in Fig. 6.2) by ordinary chasing scheme, and uses 

2x2 updating and downdating algorithms to eliminate x, and y , followed by one step 

of the qd procedure on the small block to reduce it to the upper bidiagonal matrix. The 
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entire reduction steps for Algorithm 6.1 requires 

Step 1 Step 3 

k(k - 1) + (n - k)(n - k - 1) + (n - k - 1) 

=   n   - 2nk + 2k2 - (k + 1) (7.1) 

plane rotations. 

The algorithm allows simultaneous bidiagonal reductions on both large and small 

blocks, B. and B (Step 1 in Algorithm 6.1) since they do not share any data throughout 

the reduction steps. Following similar notations used in [1], we denote F. . as Givens 

plane rotations operating on rows i and j (left rotations), and G. . as those operating 

on columns i and j (right rotations). Then from the dependency graph of this algorithm 

depicted in Fig. 7.1, we see that G     and G , the first rotations for each block, can 

be executed in parallel, and the sequence of the rotations that follows are also carried 

out in parallel. Hence, the whole reduction only takes 

k-3 

2 + 3 + --- + 3+2(fc - 1) = 5/b - 9    if k > [^-\ (7.2) 

k-3 
5n+l 2 + 3+--- + 3+2(n-Jfc-l)+l = 5n-5fc-8   if k < L^nJ (7.3) 

time steps. Obviously, the algorithm achieves an optimal performance when k « n/2. 

7.2     Overview of Connection Machine 

A Connection Machine (CM-5) system can have up to 16K physical processors 

or processing nodes (PNs). The CM-5 has two interprocessor communications networks: 

data network and control network.  The control network is used for global operations 
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such as synchronization and broadcasting. The data network, which uses, so-called, 4- 

ary fat tree [72], supports operations for data transfers from a single source to a single 

destination. 

The CM-5 supports both SIMD (Single Instruction Multiple Data) and MIMD 

(Multiple Instruction Multiple Data) programming models [66]. In the SIMD model, the 

data parallel programming associates one PN with each element of a data set. All PNs 

execute identical operations, each operating on data stored in its local memory, accessing 

data stored in the local memory of other PNs, or receiving data from the host computer. 

In the MIMD programming model, each node has its own copy of the same pro- 

gram called node program, and executes the program asynchronously. The communi- 

cation between the nodes is usually done by utilizing a set of efficient communication 

routines contained in the CM message-passing library, CMMD. For our implementation 

we chose the MIMD model because the rotations at each time step are different in terms 

of their types (left or right) and the data required. 

In CM-5 a packet of size 20 bytes is used for nodal communications. First four 

bytes are used for control purposes and the rest of 16 bytes contain the data. If a 

packet is full, that is, if it contains 16 bytes of user data, the overhead of processing it is 

smaller than the message of different sizes. Therefore, the communication overhead will 

be smaller if a user made the message size a multiple of 16 bytes [90]. 

Moreover, a cluster is composed of four processing nodes, and the nodes with the 

same cluster share a common switching node capable of four times the bandwidth of the 

node at the leaf level. A Similar statement is true for the nodes as progressing toward 

the root. Each node must go through at least one switching node to communicate with 

the other node. To communicate with the node in a different cluster, the communication 

path will be longer. Hence, it takes longer to transfer the data to the node within the 

same cluster than to the node outside the cluster. 
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We assume the CM-5 consists of p processing nodes, and denote them as NODE(O), 

..., NODE(p-l). Here, we assume that p is a power of two. We choose one of the CMMD 

programming styles, Host/Node model, where the host processor allocates the data to the 

nodes, and collects the results for the analysis. The host program calls the node program 

residing in each node for the various tasks, and each node has identical node program. 

Once the node program is loaded in each node, it can be executed asynchronously. Both 

host and node programs for our implementation are written in FORTRAN. 

7.3    Implementation Details 

In this section we give a detailed description of parallel implementation of the 

Algorithm 6.1. First, we need the following definition. 

DEFINITION 7.1. A pair of left rotations F. .      and F. or right rotations G. . 

and G. .   ,  is said to be adjacent if\i — j\ = 2. 
J.J+1 

We also use LRED(Z) to denote the sequence of plane rotations for eliminating x. 

and restoring the resulting matrix into the upper bidiagonal matrix (large block), and 

SRED(Z) to denote those for eliminating y , . and restoring the matrix into the 

lower bidiagonal form (small block), that is, 

LRED(0 = {G..+1,F..+1,...,Flj2,G12},    i=l,.. .,*-! (7.4) 

SaBD(0 = {GrB_.B_.+1,F_.B_.+1,...,FB_1>BlG|i_liB}, (7.5) 

i — 1,.. .,n — k - 1. 

From the dependency graph shown in Fig. 7.1, we note that LRED(I) and SRED(i) will 

always start and complete at the same time step although SRED(TI - k - 1), the last 

sequence for the small block, will finish before LRED(A; - 1) when k > n/2. In this case 
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the qd step of F,      k+V^k+1 fc+4'-'"' ^ -1     can Procee(^ while the large block is being 

reduced. 

There are at least two storage schemes that can be used for implementing the 

bidiagonal reduction: cyclic storage scheme and consecutive storage scheme. 

7.3.1    Basic Procedures 

In Table 7.1 we describe communication primitives for the node-to-node commu- 

nications. 

Table 7.1.    Communication Primitives 

Primitives Description CMMD Routines 

send( nodelist;out list) Send   variables   in   outlist to 
each node in nodelist 

CMMD_send_block 

recv(i;inlist) Receive variables in inlist from 
NODE(i) 

CMMD_receive_block 

swap (i;inlist;outlist) Exchange variables in outlist 
with inlist of NODE(Z) 

CMMD_swap 

send_and_recv Send   variables   in   outlist to CMMD_send_and_receive 
(i,j;inlist;outlist) NODE(J')   and   receive   vari- 

ables in inlist from NoDE(i) 
simultaneously 

Note that all of CMMD communication routines used are blocking version, that 

is, each node waits until it finish sending or receiving the data without proceeding to the 

next executable code. This ensures that each node carries out the rotation with correct 

data as we will see in the next section. 
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7.3.2    Cyclic Storage Scheme 

Suppose we store the data rowwise, so that NODE(Z) contains all of nonzero entries 

on the row i such as the diagonal entry, and the nonzero entries created by the chasing 

steps. Then we immediately observe that this scheme would not give a full parallelism 

among the nodes.  For instance, at time Step 6 in Fig.  7.1 (sixth matrix in Fig.  6.2), 

G      and G      cannot be executed in fully parallel fashion because NODE(2) has all 
1,2 3,4 

three elements in the second row, but (2,3) entry is also used in processing G , so that 

NODE(2) has to communicate with both NODE(1) and NODE(3). In fact, any adjacent 

pair of right rotations would cause similar difficulties when storing the data rowwise. 

However, this problem can be completely avoided by storing the data columnwise. 

We show this using the following proposition. 

PROPOSITION 7.1. Suppose n is even. Then if k / n/2, the dependency graph for 

Algorithm 6.1 shown in Fig. 7.1 can contain no adjacent pair of left rotations at any 

time step. 

Proof. We only consider the reduction steps for large block since the same ar- 

gument applies to the small block. Let G. . n and G. . . 0 be the first rotations in 

LRED(Z) and LRED(i+l), respectively. Then, we see that G. . _ of LRED(Z + 1) 

is executed after completing the rotations G. .  ,,F. -,,,F.  . . of LRED(i), i.e., when 

G.      .of LRED(t) is executed. So, their indices differ by two. Since the reduction pat- 
i—l,i 

terns proceeds as GFFGFG • • • FG, and the indices for the rotations decrease by one 

for every pair of F and G, the indices of subsequent rotations LRED(I) and the ones in 

LRED(i + 1) differ by at least two. Therefore, it is impossible to have F. . in LRED(Z) 

and F. . in LRED(Z + 1), where |/-j| = 2 at the same step. For LRED(I) and LRED(J'), 

where \i — j\ > 2, the result is more obvious.   D 
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If n is odd, we have the same result regardless of the value of k.   In fact, if n 

is even and k - n/2, it is possible to have two adjacent left rotations, namely, F, 
k—l,k 

and F,      ,      in the same time step. But, the reduction step in this case will have the 

following form: 

/•. 

\ / 

However, since there is no data dependency among the nodes, they can be executed in 

parallel. Therefore, NODE(J) stores all of nonzero entries of j'-th column including the 

entries of x and y, that is, we partition the set of nodes {0,1,.. .,p — 1} into 

^ = {0,1,...,^-!},    Ps = {po,po+l,...,p-l} (7.6) 

where p q < k < (p  + l)q. Here, q = n/p. 

NODE(J'), j € P'   stores columns / < k where 

j + l = l    (mod po) 

NODE(J), j 6 P , stores columns k < I < n where 

J-P0+l = (l-k)    (mod po) 
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EXAMPLE 7.1. Suppose p = 8, n = 16, k = 11.  Then q = 2, P = {0,1,2,3,4} and 

P ={5,6,7}. 

j 0 1 2 3 4 5 6 7 

columns 1,6,11 2,7 3,8 4,9 5,10 12,15 13,16 14 

7.3.2.1    Chasing Patterns 

Before we consider designing the code for the reduction steps, we need to catego- 

rize possible chasing patterns. All of the reduction steps for the large block in Fig. 6.2 

fall in one of the chasing patterns described in Fig. 7.2. 
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s   : 
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Fig. 7.2.    Chasing Patterns 

The patterns I -I   correspond to the large block, and 5 -s   to the small block. 

Note that patterns /. is symmetric to s, simply because the types of resulting bidiagonal 
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matrices and the chasing direction for each block are exactly opposite. Here, 6's represent 

the diagonal entries, a's super or subdiagonal, and d's bulges. Then, we see that LRED(i) 

and SRED(J) have chasing patterns, respectively, 

2(«-l) 2(t-l) 

{I ,1 A A A A ,...,/ ,/) and {s ,s ,s ,s ,s ,s ,...,s ,s }. X l'   2'  3'  4'  3'  4'        '  3'  4J l   1     2'   3'   4'   3'   4'        '   3'   4J 

Note that G     has I  for LRED(1) with a undefined and /  for LRED(Z), i > 1. Similarly, 

G has 5   for SRED(1) with a undefined and s   for SRED(i), i > 1. 
n-l,n 1 v   ' 4 v  n 

7.3.2.2    Host Program 

The host program distributes the data among the nodes, coordinates the order of 

the reductions, and initiates the reduction process. The CMMD routine CMMD_distrib_ 

tojiodes provides efficient ways of allocating a. and z. into the local variables b and z 

of NODE(Z). 

Except for the LRED(1) and SRED(1), the host program initiates the subsequent 

reductions at every three time steps, i.e., LRED(t) SRED(TI — i + 2) begin at time step 

3 * (i — 1). This can be done by sending a signal to NoDE(i) and NoDE(n — i) as soon 

as receiving the message from NoDE(i — 2) which just finished processing the rotation 

F.     .    . 
i-2,t-l 

Upon the completion of Step 1 of Algorithm 6.1 by the nodes, the host program 

calls the subroutines which will perform 2x2 updating or downdating and one step of 

the qd process to complete the bidiagonal reduction. This step of the qd process is 

completely serial unless k > n/2. If it is the case, NODE(£ + 1), ..., and NoDE(n) can 

carry out the qd step while the reduction on the large block is performed. 
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7.3.2.3    Node Program 

The CM-5 allows a single node program for all the nodes. However, we need to 

design the code so that a single program can handle multiple chasing patterns at the 

same time. Moreover, each chasing pattern needs the data from two or three nodes, and 

these nodes must know in advance what types of operations to perform. For instance, 

all patterns except for I  and s  require two nodes to do the job, but I  and s  need three 
3 3 3 o 

columns, and so require three nodes to get involved in the computation. To this end, 

each node keeps a local variable op which is continually modified at every time step. 

The value of op of NoDE(t) is determined by NoDE(i + 1) for reducing the large block 

and by NoDE(i — 1) for reducing the small block as we will see shortly. 

The node programs for the corresponding patterns are given in Table 7.2. A 

unique value of op is assigned to each segment of the node program. The value of 

op determines which operation each node should perform at a given time step, and each 

node executes only the part of the code marked by its current value of op . 

The host program 'wakes up' the NODE(I) and NoDE(n — i) always with op = 

1 and op = 11, respectively, to start LRED(i) and SRED(Z) because they begin with 

eliminating x. and y        .    . For instance, let us consider LRED(3) = {G    , F   , F'   , 
i n—K—1+1 3,4       3,4       2,3 

G    , F   , G    }, which has chasing patterns {/,/,/,/,/,/}. Then, NODE(3) receives 
2,3       1,2        1,2 1x34*54 

the value of op = 1, and it immediately signals NODE(4) with op = 5 to carry out the 

pattern / . Upon the completion of / , NODE(3) and NODE(4) increment their values of 

op by one to continue on to the next pattern / . At this point it is not necessary for 

NODE(3) to signal NODE(4) to specify the types of operations. When I is completed, 

NODE(3) again increments its value op by one and signals NODE(2) with the updated 

value of op to start the rotation F with pattern / . Then, NODE(2) signals NODE(3) 

with op = 7 and NODE(4) with op = 9, and all three nodes execute parts of the code 
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Table 7.2.   Node Programs Using the Cyclic Storage Scheme 

Pattern NoDE(i) NODE(i + 1) NoDE(i + 2) 

'i 

/* op = 1 */ 
swap(i+ l;a,b,x;b, x) 
formrot(x, x,c,s) 

a *— c* a 
b *— c* 6 
d < s * b 

/* op = 5 */ 
swap(i;6, x;ä, 6, x) 
foTva.rot(x,x,c,s) 

d * s * a 
a <— s*b 
b <— c*b 

'2 

1* op = 2 V 
formrot(6,d, c, s) 
send(i + l;c,s) 

1* op = 6 */ 

recv(i; c, s) 
applyrot(a, 6, c, s, 1) 

/ 
3 

/* op = 3 V 

recv(i + 2;c,s) 
6 *— c* b 
d*—.s*b 

/* op = 7 */ 

recv(i + 2; c, s) 
applyrot(6, a, c, s, 1) 

/* op = 9 */ 
formrot(a, d, c, 
send(t, t + l;c, 

/ 
4 

/* op = 4 */ 
swap(i + 1; a, 6, d; ä, 6) 
formrot(6, d, c, s) 
a <— c * a 
applyrot(ä, 6, c, s, 1) 

/* op = 8 */ 
swap(i; a, b; ä, b, d) 
formrot(6, d, c, s) 

d <— s *a 
applyrot(a, 6, c, s, 1) 

Sl 

/* op = 11 */ 
swap(i'+l;6,t/;ä,6,2/) 
formrot(j/, y, c, s) 

b *— c*b 
a <— s*b 
d *— s * ä 

/* op = 15 */ 
swap(i; a, b, y\ I, y) 
formrot(y, y, c, s) 

d < s * b 
b <— c* b 
a <— c* a 

S2 

/* op = 12 V 

recv(i+ l;c, s) 
applyrot(a, 6, c, s, 1) 

/* op =  16 */ 
formrot(6, d, c, s) 
send(i; c, s) 

S 
3 

/* op = 13 */ 
formrot(a, d, c, s) 

send(j + 1, i + 2; c, s) 

1* op = 17 */ 

recv(i; c, s) 
applyrot(6, a, c, s, 1) 

/* op =  19 */ 

recv(i; c, s) 
d <— s* b 

S4 

/* op =  14 */ 
swap(t + 1; a, b; 5,6, d) 
formrot(6, d, c, s) 

applyrot(a, 6, c, s, 1) 
d <— s * a 

/* op = 18 */ 
swap(i;a,6,(i;ä, b) 
formrot(6, d, c, s) 

applyrot(5, b, c, s, 1) 
a *— c* a 
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according to the value of op . When this step is finished, NODE(2) signals the host node 

to start LRED(4), and it moves on to the next pattern /   which can be done exactly the 

same way. Similarly, we process the repeated patterns /   and /  in the same fashion. 

The node program for the cyclic storage scheme is described in the Appendix. 

7.3.3    Consecutive Storage Scheme 

In this scheme consecutive blocks of the bidiagonal matrix are stored in each node. 

We partition the set of nodes exactly the same way as in (7.6) Using MATLAB notation, 

NODE(J') stores 

jq+l:(j+l)q \ij <pQ-l 

(P0-l)?+l:* if J = P0 - 1 

n:-l:n-q+l if p   <j<p—l 

n — (p — p  — l)q:—1: k + 1 ifj=p—1 

columns of B. 

Denote n (j) as the number of columns which the NODE(J') has in its memory. 
c 

Then, we have 

n (j)        =q,    t = 0,...,p  -2,p ,p  + l,...,p-2 
o * o 

n(p-l)    =(l-pn)q + k 
cv' 0 

n(p-l)     = {n-k)-(p-p  -l)q. 
c u 

EXAMPLE 7.2. Suppose p = 8, n = 16, k = 11. Then q = 2, P = {0,1,2,3,4} and 

P = {5,6,7}. Each node has the following columns: 
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j 0 1 2 3 4 5 6 7 

columns 1,2 3,4 5,6 7,8 9,10,11 16,15 14,13 12 

n(j) 
C 

2 2 2 2 3 2 2 1 

Note that the last n—k columns are stored in the nodes in P in reverse order. This 
s 

ordering makes it possible for the nodes in P and P to have identical node programs for 

the bidiagonal reductions on the large and small blocks. From Fig. 6.2, we see that the 

bidiagonal reductions on these two blocks are exactly opposite, so that the reduction on 

the small block can be done by reversing the order of the diagonal entries and y, reducing 

the block exactly the same way as the large block, and again reversing the diagonal and 

bidiagonal entries when completed. Therefore, we only describe the reduction steps (6.8), 

that is, only for the nodes in P. 

As in cyclic storage scheme NODE(j) contains variables a[i], b [i], z [i], i=l,..., 

n (j) to store, respectively, the subdiagonal or superdiagonal entries, diagonal entries, 
c 

and z.. As mentioned before, the orders of array elements are reversed. 

Following the notation in (7.4), NODE(0) initiates LRED(I), i,...,q— 1, sequen- 

tially.  Then it needs to communicate with NODE(1) to execute the chasing pattern / 

of LRED(<7), reducing the entries of z. The rest of LRED(g) and starting LRED(g + l), 

which is the responsibility of NODE(1), are done simultaneously. We repeat this process 

until all of the nodes will have finished their portion of the bidiagonal reduction. 

Let us call a node which initiates a LRED(Z) for some i at a given time, the master 

node. A slave node is the node which once became the master node, but now has task 

of chasing bulges as far as it can. Hence, at any time, there can exist only one master 

node, say, NODE(J'), for some j < p — 1, and j slave nodes, NODE(0), ..., NODE(J - 1). 

The rest of the nodes stay idle. Note that NoDE(p  - 1) never becomes a slave node. 

A pseudo-code for the node program is given in Fig. 7.3. 
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/* We assume buf contains b[q-l], b[q],  a[q], z[q] .  */ 

/* Node(O)  is the master */ 
if myid == 0 then 

for i = 1 to numcol-1 
reduce(i); 

end; 
send(myid+l, buf); recv(myid+l, buf); bchase(q, numcol); 
for i-q to k-q      /* Now it's a slave */ 

send(myid+l, buf); recv(myid+l, buf); bchase(q, numcol); 
end; 

/* Node(idhi) is the master */ 
else if myid == idhi then 

recv(myid-l, buf); redxnode(a, b, d, z, buf); send(myid-l, buf); 
for i = 1 to numcol-i 

reduced); recv(myid-l, buf); chxnode(a, b, d, buf); 
send(myid-l, buf); 

end; 

/* Node(l) Node(idhi-l) */ 
else 

recv(myid-l, buf); redxnode(a, b, d, z, buf); 
send(myid-l, buf); 
for i = 1 to numcol-1 /* It's now the master */ 

reduce(i); recv(myid-l, buf); chxnode(a, b, d, buf); 
send(myid-l, buf); 

end; 

/* reduce across the node */ 
send(myid+l, buf); recv(myid+l, buf); bchase(q, numcol); 
for i = (myid+l)*numcol to k-1 /* It's now a slave */ 

send.and.recv(myid-1, myid+1, bufin, bufout); 
chxnode(a, b, d, bufin); 
send_and_recv(myid+l, myid-1, bufout, bufin); 
bchase(q, numcol); 

end; 
end; 

Fig. 7.3.   Node Program for the Consecutive Storage Scheme 
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Here, idhi = pQ - 1 and numcol = n (j). The function reduce(i) performs the 

following transformation: 

i        i 

b     a 
l      l 

6      a 
2 2 

b a 
t-i      i—l 

b.        0 
t 

6.+1 

z.      z. 
i t+1 

bl     fll 

b      a 
2 2 

b.        a.  ,       d 
t-i      «-1 

e      6. 
t"+i 

«+i 

followed by bchase(i) 

1 I 

b     a 
l      l 

2 2 

6.  ,    ä 
t-i      t-i 

e       b. 
i+l 

i+i 

b     5 
l       l 

K     a, 2 2 

t-1 t-1 

6.        a 

«+i 

•+i 

redxnode carries out the sequence of pattern I -I -I , and chxnode I -I -I . 
^ r 12   3 3   4   3 
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7.3.4     Computation Cost 

Let r   ,r , and r   be, respectively, the time required for one multiplication, one 
MAS 

addition, and one square root. Then the time required for (6.8) is 

T(k) := kT + (k- l)T + (4* - 4)r   + £ T Jk -i+1) 
9                                               1=1 

(7.7) 

where T , T and T    (i) are, respectively, the time required for formrot, applyrot, and 
g      a               red 

reduce(i). Since 

T        = lOr    + 2r 
g                      MA 

(7.8) 

Ta          =4TM + 2TA (7.9) 

TrJj)   =(2j-3)T+(2j - 3)T + (4j - 10)rM, (7.10) 

the time required for reducing the large block to bidiagonal form is 

T(k) = (16k2+34k - 196)r 
A r

 + (4k2 + 8k- 38)r (7.11) 

Moreover, 2x2 updating or downdating requires 

T   =\
12T

M 
+
 
T

A 
+
 
T

S 
22         | 

9r    +6r   +6r 
I       M          A           S 

for updating 

for downdating 
(7.12) 

and one step of the qd process needs 

T , = (lOn- 10ib-8)rw qd                                               M 
+ 2(n-fc-l)r . (7.13) 
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Therefore, total cost required for the Algorithm 6.1 by each node, is, on average, 

TB := i{(T(*) + T(n - k) + T^ + T J) (7.14) 

Suppose k = n/2. Then 

TB   =±{(2T(k) + T22 + Tqd)} (7.15) 

= -{(32k2 + 78k - 390)rM + (8A;2 + 18* - 75)r   + 3Tg} (7.16) 

Here we took the average for T  . 

7.3.5    Communication Cost 

For our analysis, we ignore any possible contention problem for simplicity.   Let 

a   and ß   be, respectively, the startup time and the data transfer rate, time per byte. 
d d 

We need at most four real*4 in single precision, so that sending this message of size 16 

takes a  +4*4/?   seconds. Then the data in the packets used in communication would 
d d 

be of size multiple of 16, which makes the communication the most efficient on CM-5 

[90]. 

7.3.5.1     Cyclic Storage Scheme 

From Table 7.2, we see that F   and G   require communication at every window 

step. Hence, from (7.2) and (7.3), the communication cost becomes 

T        := < 
CYC 

V A  d d> (7.17) 

(5TC - 5* - 8)(a  + 16/3 )   if k < n/2 
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seconds, which is impractical on a coarse-grain distributed-memory MIMD multiproces- 

sor due to enormous communication overhead. Moreover, very few computations are 

carried out by each node (see Table 7.2). Therefore, a fine-grain multiprocessor with 

fast communication ability would be required to make this storage scheme practical for 

bidiagonal reduction. 

7.3.5.2    Consecutive Storage Scheme 

Since NODE(O) initiates and terminates the bidiagonal reduction for the large 

block, the total communication cost for this scheme is determined by the number of 

send and recv calls done by NODE(O). For reducing the first q — 1 columns of B, which 

is done by NODE(O), no communication is required. As a slave node NODE(O) needs to 

communicate k — q + 1 times with NODE(1) to chase the bulges. 

Moreover, when k < n/2, NODE(P ) makes extra effort to complete bidiagonal 

reduction by applying one step of the qd process which requires one more communication 

step. When k > n/2, nodes in P can carry out the qd step while the large block gets 

reduced by the nodes in P. Therefore, the total communication cost for this storage 

scheme becomes 

(k-q + 2)(aJ + 16/?,) if k > n/2 

'CON '~ 
Tnn„--={ d d (7-18) 

{(n - k) - q + 1 + (\P | - l)}(a  + 16Ö )   if k < n/2 
s a a 

seconds. Here, IP I denotes the number of nodes in P . Note that T        becomes worst 
's' s CON 

when k < n/2 because the reduction on the large block is already completed before the 

qd process begins, and hence there is no parallelism among the nodes for this phase of 

the algorithm, requiring \P \ — 1 additional communication steps. 



159 

7.4    Timing Results 

We implemented Algorithm 6.1 with both storage schemes on CM-5 that consists 

of up to 32 nodes at the Northeast Parallel Architectures Center (NPAC) at Syracuse 

University. Each node of the CM-5 is a SPARC chip which runs at 32 MHz and delivers 

22 Mips and 5 Mflops. There is a 64 Kb instruction and data cache and a 16 Mb memory 

in each node [111]. In each node, there are two vector units; each vector unit is capable 

of peak rate 64 Mflops. 

We generated an n-by-n random diagonal matrix B of the form (1.2) and a random 

n-vector z with k = n/2, where n = 64,128,256,512,1024. We only implemented the 

bidiagonal reduction part for modifying the SVD described in Algorithm 6.1. Computing 

the SVD of a general full matrix on a distributed-memory multiprocessor is described in 

[71], and computing the SVD of the bidiagonal matrix in [33]. 

The execution time for bidiagonal reduction using the consecutive storage scheme 

with different matrix sizes and various set of processing nodes is given in Table 7.3. Here, 

we use the following definition for speed-up achieved by our algorithm 

~ T{p) 

where T{p) is time required to execute the program on p processors. Similarly, we define 

the efficiency of a parallel algorithm as 

E=   T™ 
pT(p) 

We observe a linear speed-up as n increases with p fixed. When n is small, we 

cannot expect any speed-up mainly because of high communication cost compared to the 

computation cost. For instance, when n = 64, more than 50% of the total cost accounts 
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for the communication regardless of the number of processing nodes (except for the case 

p = 4). In fact, when p = 32, most of time were spent in communication. In this case, 

since the value of q is only two, each node has so little to do, and therefore the ratio of 

the time spent in communication and computation is quite large. 

From (7.18) since q = n/p, we see that as p increases, so does T . However, in 

general, q is small compared to k. Hence, the difference in the communication cost be- 

tween different p is not significant as seen in Table 7.3. In general, as n increases, so does 

q, and therefore, the ratio of communication cost and total cost also decreases. However, 

when p is small and n is large, significant part of time were spent in communication 

(p = 4, n = 512,1024; p = 8, n = 1024), and little speed-up was gained. 

Table 7.4 shows the difference in execution time for various k when n = 1024 and 

p = 32. Clearly, we achieve an optimal speed-up when k is close to n/2. Note also that 

the bidiagonal reduction with k > n/2 is slightly faster than that with k < n/2 mainly 

because when A; > n/2, the qd step can be executed in parallel with the last chasing 

step for the large block. 

We also implemented Algorithms 6.1 and 6.2 using the cyclic storage scheme. 

However, it was embarrassingly slow, and no speed-up was gained in any case. As we 

have shown in the previous section, this storage scheme becomes totally impractical when 

n > p due to high communication overhead caused by severe contention problems. 
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Table 7.3.    CPU Time (in sec) for the Bidiagonal Reduction 

p n Comp Comm Total % Comm Speedup 

64 0.0182 0.0045 0.0227 19.8 3.3 
128 0.0746 0.0086 0.0831 10.3 3.5 

4 256 0.3032 0.0171 0.3203 5.3 3.6 
512 1.5543 0.1314 1.6857 7.8 2.7 
1024 5.2692 0.3672 5.6364 6.5 3.3 
64 0.0079 0.0078 0.0157 49.7 4.8 
128 0.0338 0.0137 0.0475 28.8 6.1 

8 256 0.1397 0.0266 0.1665 16.0 6.8 
512 0.5697 0.0529 0.6308 8.4 7.2 
1024 3.4508 0.3929 3.8326 10.3 4.9 
64 0.0045 0.0136 0.0181 75.0 4.2 
128 0.0214 0.0235 0.0449 52.3 6.5 

16 256 0.0929 0.0417 0.1346 31.0 8.5 
512 0.3878 0.0768 0.4645 16.5 9.8 
1024 1.2302 0.1363 1.3664 9.9 13.8 

64 0.0013 0.0197 0.0210 93.8 3.6 
128 0.0089 0.0294 0.0383 76.8 7.6 

32 256 0.0429 0.0504 0.0934 54.0 12.3 
512 0.1875 0.0903 0.2778 32.5 16.4 
1024 0.7824 0.1537 0.9361 16.2 20.1 

Table 7.4.   CPU Time (in sec) with Various k (n = 1024, p = 32) 

k Total Speedup k Total Speedup 

64 1.9039 9.9 960 1.8818 9.9 
128 1.7741 10.6 896 1.7542 10.7 

256 1.5138 12.4 768 1.4999 12.5 

512 0.9361 20.1 
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Chapter 8 

Conclusion 

We have presented efficient algorithms for modifying the TSODs, and shown that 

2 
the TSOD can be updated and downdated in ö(n ) flops in a manner that preserves its 

structure. The backward error analysis and perturbation theory show that the proce- 

dures satisfy a blockwise stability property. Thus if our interest is in separating the two 

subspaces associated with the large and small singular values, we will obtain answers 

that are as good as can be expected. The use of this perturbation theory shows that 

we achieve more accuracy in the singular values and more orthogonality in the singular 

vectors that result from our update procedures. Our numerical tests show some im- 

provement in the accuracy of downdated singular values using our algorithm instead of 

general chasing. 

Our approach to modifying the ULVD is particularly promising. It is simple to 

implement for both updating and downdating, and preserves the rank-revealing struc- 

ture often without the deflation process to compute the numerical rank of the matrix. 

Moreover, one can efficiently track the size of each block of lower triangular part of factor- 

ization for an accurate monitoring of the condition of downdating problem. Furthermore, 

data independence among the blocks makes the algorithms parallelizable. 

We also have given algorithms for rank-one updates and downdates of the SVD 

and partially reduced bidiagonal forms. It has also been shown that these algorithms 

satisfy a blockwise stability criterion that has not been shown for other algorithms. The 

algorithms proposed to allow the user to specify a tolerance between large and small 
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singular values, and the separation between the associated subspaces is preserved by the 

algorithm. 

Finally, we presented an efficient method for modifying the SVD in parallel to 

establish its practical value in real time applications. The algorithm preserves the block 

structures, maintaining the efficiency of parallel procedures as well. The consecutive 

storage scheme outperforms the cyclic storage scheme in bidiagonal reduction due to 

high communication cost of the latter scheme. The experiments show the efficiency in 

using the processors was slightly over 60% for the consecutive storage scheme. 

Although the entire thesis is devoted to the problem of modifying the TSOD, there 

are a number of unresolved issues and problems. We suggest a few in the following: 

• The stability of the CSNE approach taken when downdating is not possible is de- 

termined only by experimental results. In particular, one needs to know how good 

x in (6.17) really is. A rigorous error analysis should be performed by extending 

such results as those due to Björck [18]. 

• Parallelizing the ULVD procedures is much more challenging than the SVD pro- 

cedures. Although the reduction on the large and small blocks can be executed 

simultaneously, it is difficult to enhance parallelism within the block. As suggested 

in [103] for parallelizing the URVD, we may require a fine-grain MIMD architecture 

for efficient implementation of systolic arrays. 

• A procedure described by Gu and Eisenstat [56] is a promising approach to modify 

the singular vector matrix after modifying the SVD. They use an adaptive version 

of one-dimensional fast multipole method [29]. However, an efficient parallel imple- 

mentation for this acceleration method is not, as yet, available although a parallel 

procedure for non-adaptive version has been developed [45].   Together with our 
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parallel bidiagonal reduction procedure described in Chapter 7, and parallel al- 

gorithms for computing the SVD of bidiagonal matrices [33, 65, 107], the SVD 

algorithm described in Chapter 6 can be implemented fully in parallel. 

It would also be interesting to extend algorithms for modifying the ULVD to those 

for modifying the ULLVD for two matrices [75] as an approximation to the gen- 

eralized SVD [84, 120]. We also need to analyze the stability and complexity of 

the algorithms for modifying the ULLVD and derive the error bounds on the sub- 

spaces computed by the ULLVD compared with those by the generalized SVD. The 

Estimator-Correlator array processor [108, 109] that can implement the estimator 

kernel using the ULVD and the inverse noise kernel using the ULLVD would be a 

practical application. 
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Appendix 

Node Program for Bidiagonal Reduction 

with Cyclic Storage Scheme 

c 

c This node program will reduce the arrow-head matrix to 

c 

c 

c 

the bidiagonal matrix using cyclic storage scheme 

Variables used: 

c abdz — contains values of a, b, d, and z in that order 

c myid — node id 

c idpl — myid + 1 

c idp2 — myid + 2 

c idml — myid - 1 

c idm2 — myid - 2 

c hid — host id 

c cs — angles for the rotations 

c inrngl — processing the large block 

c 

c 

inrng2 — processing the small block 

special case — first two rotations in each block 

100  continue 

again = .true. 

50   continue 

ret = CMMD_receive_block(src, tag, op, isize) 

150  continue 
go to (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), op 

1 

2 

op = 1 

. .  op = 2 

3    continue 
ret = CMMD_send_block(idpl, tag, 7, isize) 
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ret = CMMD_send_block(idp2, tag, 9, isize) 

ret = CMMD_receive_block(idp2, tag, cs, angsiz) 

abdz(3) = cs(2)*abdz(2) 

abdz(2) = cs(l)*abdz(2) 

op = 4 

it = it + 1 

go to 200 

4 continue 

ret = CMMD_send_block(idpl, tag, 8, isize) 

ret = CMMD_swap(idpl, abdzt, bufsiz, abdz, bufsiz) 

call formrot(abdzt(2), abdz(3), cs(l), cs(2)) 

abdz(l) = cs(l)*abdz(l) 

call applyrot(abdzt(1), abdz(2), cs(l), cs(2), 1) 

op = 3 

it = it + 1 

go to 200 

5 ... op = 5 

6 ... op = 6 

7 continue 

ret = CMMD_receive_block(idpl, tag, cs, angsiz) 

call applyrot(abdz(2), abdz(l), cs(l), cs(2), 1) 

it = it + 1 

go to 100 

8 continue 

if (inrngl .and. it .eq. maxit) then 

ret = CMMD_send_block(hid, tag, 20, isize) 

end if 

ret = CMMD_swap(idml, abdzt, bufsiz, abdz, bufsiz) 

call formrot(abdz(2), abdzt(3), cs(i), cs(2)) 

abdz(3) = cs(2)*abdzt(l) 

call applyrot(abdz(1), abdzt(2), cs(l), cs(2), 1) 

it = it + 1 

go to 100 

continue 

call formrot(abdz(l), abdz(3), cs(l), cs(2)) 

ret = CMMD_send_block(idm2, tag, cs, angsiz) 

ret = CMMD_send_block(idml, tag, cs, angsiz) 

it = it + 1 

go to 100 
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10   ... terminate 

go to 999 

200  continue 

if (again) then 

again = .not. again 

go to 150 

else 

if (myid .ne. 0) then 
ret = CMMD_send_block(idml, tag, op, isize) 

else 

ret = CMMD_send_block(hid, tag, op, isize) 

end if 

go to 100 

end if 

999  continue 

similarly for the small block 


